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Chapter - 1

Two-Dimensional elastostatic Problems
1.1 Objectives
In this Chapter, we familiarize the students witkwoFdimensional elastostatic
problems. We shall discuss about some basic defisitof Plane strain deformation,
Principal strains and directions for plane stragfiodmation, Anti-plane strain, Plane
stress deformation, Generalized plane stress andstiess function. Examples are
also given to illustrate these topics.
1.2Introduction
The two-dimensional problems with which we shalldoacerned in this chapter fall
into two physically distinct types: Plane strainfatenation and Plane stress
deformation. First of thes@roblem arisein the study of deformation of large
cylindrical bodies acted upon by the external ferse distributed that the components
of deformation in the direction of axis of the eygler vanish and the remaining
components do not vary along the length of thendgdr. This is the class of problems

in plane strain deformation.

]
T
]
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The other type appears in the study of the defaamaif thin plates, the state of stress
is characterized by the vanishing of the stresspomants in the direction of the

thickness of the plate. These are the problemslanepstress.r,;,7,,,7,; Stress

components are zerae,,,7,,,7,, are independent of;.

X3

X
1.3Plane strain deformation
A body is said to be in the state of plane stramdeformation), parallel to the x, -
plane, if the displacement componemj vanishes identically and the other two
displacement componentg and u, are functions ofx, and x,coordinates only and
independent ok, coordinate.
Thus, the state of plane strain deformation (palrédl x,x,-plane) is characterised by

the displacement components of the following type:

u = ul(X11 X, )' u, =u, (X1' X, )' u, =0 1)
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Here strain components, =e,; =e,; =0 and e,,e,,,e, are independent of;, i.e.,

non vanishing components of strain are
1
€5 ZE(U”"; +uﬁ,,,) ;a, =12
Also non vanishing components of rotation tenser ar

W,z :%(u,,ﬁ —uﬂ,a) ;o oa,f=12

The stresses follow from stress-strain relations

r, =A9; J+2ue J=¢; whered and u are Lame’s constants and

X
o, is Kronecker delta.
i.e., the stresses are given by

Ty S0, 8+ 1 (U +Us,) 1 @ B=12 2)
where d=¢,+e,, = (Un + Uz,z)

From here, we get

[3=T7,,=0, 733=AF

From (2), we get

I +7, = 2(/1 +,U) (e11 +ezz)
Ity

:>(eu+e22)= 2(/] +,U)
So

- Ay ¥75)
2(/] +y)
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A
=1, =0(r, +7,,) , whered = —"— is Poisson’s ratio.
2(A+ p)

= rg3is expressed in terms of, and 7,,.

From equilibrium equations

The components, and F, of body forces must be independentxgfso far asrj;

do not depend oxy,. AlsoF, =0, sincer,is not a function of ;.

Here equilibrium equations become

Taﬁ,[:’ = _Fa (Xl’ XZ) (3)
=Ty, T, =R (Xv Xz) ( 3= O) (4)
Tyt T, =—F, (Xp Xz) ( I23= O) (5)

Substitute (2) into (3), we get Navier’s equations
Equation (2) is
Ty =A0,,0 + ,u(um + um)

043
= Topp = A0y 5 +u (uaﬁﬁ + ”ﬁ,aﬁ)

= T,p5= A0, +,u(D2ua +u/,,,/,,a)
=8, +,u(D2ua +z9’a)
whered = Uy

Hence equation (3> —F, = (A + u)3, + u0%u,
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or  (A+u)d, + 0%, =-F,(x,x,) (6)
where

2 2
Dzza +a

6x12 aX2 2

(6) are known as Navier’s equations.
We know that strain-stress relations are given by

_1+o0 o

QJ ——E Tij —EH

where

6= (111 + 720 +133)

Therefore
L AN
1 E 1 p\VutiaTls
1+o0 o
= E I _E(Tn Tt U(Tn + Tzz))
1+o0 o
:?T11_E(1+U)(T11+T22)
or
1+
Un:en:?a[(l‘a)fll‘mzz] , (7a)
1+
U,, =€, =?0 (1_J)T22 _OTll] (7b)
and
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2(1 + 0-) T12

2e, = (u12 + u2,1) = = (7c)

Five out of six compatibility equations are ideatlg satisfied.

The only compatibility equation to be considered is

€100 T €551 = 2651,

Using (7), we get

(L- 0)(Tll22 + 72211) - 0(71111 + 72222) =24, (8)

Differentiate (4) w.r.t.x;and (5) w. r. t.x, and adding, we get

Ty T +2I,,+F, +F,, =0 9

From (8) and (9), we get

Tipg FTop0 + (1— J) (rm2 + rzm)— a(rml + r22’22)+ F.+F,,=0

= (1— 0) [rlm T ¥ Tpp + rzmj +F,+F,, =0

=  (1-0)|D%(ryy +1,,)|+ F,, +F,, =0

= D1, +1,,) +—Faj;§'2 =

Sinced = 204 + ) = 1—10 ) 2)(I/]+Jr2f1)

So, we get

0%(ry1 +720) + 20+ 1) (i1 +Fz2)=0
A+2u ’

... +’u)(F11+F22) (10)
A+2u ° ” '
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where 6, = (111 +7)

Equation (10) is the compatibility equation in terof stresses.

In cylindrical coordinatedr,8, z) :

If u,,ug,u,are displacement components, then the straingnmstef displacements
relations are given by

e, = ol _ u
rr ar r,r

e = 1[0
rl 08 '

_1{10u, Odu, u,
€o =5 oyt T
rog or r

€&z=€z=€;=0

where displacement components under plane straidittans are given by
u =u(r.8), u,=u,(r.68), u,=0

Strain-stress relations are:

1+
€rr :?0 (1_U)Trr _UTHH]

and ey, = 1-'-?0[(1_ U)Tee —or,

erg - (1+ U)Tre
E

Tll + Z-22 = Z-rr + T&G
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) F
Fiu+Fpo = divE = Fp +—6r”‘9 +%

Compatibility equations:

0> 10  10° 1 Foo . F
— - —+= T. +7,)+ F +>22>+-21|=0
(ar2 ror r 082]( ) 1—0( r

Examples of Plane strain deformations
(A) The problem of stresses in an elastic semi-infimedium subjected to a vertical

line-load is a plane strain problem.

Here, the line-load extends to infinity on bothesidf the origin. The displacement
components are of the type

U =0 U, =u,(X,%) Uy =us(x,,%;)

(B) The problem of determination of stresses tesylfrom a tangential line-load at

the surface of a semi-infinite medium is a plamaistproblem.
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(C) The stresses and displacements in a semitmfglastic medium subjected to
inclinedloadscan be obtained by superpositioiithe vertical and horizontal cases. If

the components of the line-load agcosa and qsina , the stresses can be

determined.

q .
o -

L
rd

q&lﬂa wlr”r"q cos

X2

W

Fl
-
L
'
-
-

yid
X1

X3

(D) The problem of deformation of an infinite cydier by a force in thegx, - plane

is a plane strain problem.
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In Cartesian coordinates

ulzul(xl,xz), uzzuz(xl,xz), u, =0.

In cylindrical coordinates

u =u(r,8), u,=v(r,0) u,=0

1.4 Principal Strains and Directions for Plane Strain Deformation

A deformation for which the strain componems,e,, and e, are independent of

X, and e, =e,; =e,; =0 is called a plane strain deformation parallelhte ¥ x,-

plane.

For such a deformation, the principal strain in divection of x,-axis is zero and the

strain quadric of Cauchy

g X X, =xk*, (1)
becomes
ey X 26, XX, +€,X; =k* | ()

which represents a cylinder in three-dimensions the axes be rotated aboxit-axis

through an anglé to get new axe® x; X, X;.
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Let a;, = cos(x ,X;) (3)
Then
Xl X2 X3
X coséd siné 0
X5 —-sin g cosé 0
X3 0 0 1

The strainseg,, relative to primed system are given by the law
€ =a_a_ e (5)

pa pr =g T

For (ij) = (11), (22), (12), (21), we find
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€1 = ; & §

= a6, +256, 8,8, ta, a6,
= (cos @) g, +(sin*8) e,, + 2sinf cosb e,

_ 1+ cos26 1-cos28 :
= &y T t €, T +e, sin26

= %(eu + 6322)+%(ell —e,,) cos20 +e,,sin20

1 1 ,
€ = E(eu + ezz)"'E(eu - ezz) cos20 +e&, sin26

Similarly

U

1 1 )
€, = E(en + ezz)_E(en - ezz) cos26 -e,, sin26

U

€. = ‘%(en - ezz) sin26 +e,, cos28

U

€, =€, =€ =0

The principal directions in thgx, -plane are given by

€, =0

This gives

sin26  cos26 1

1
B E(ell_eZZ) \/e122+2-1(e11_e22)2

and

tan26 = 1 Gz —( Zfl; )
E (eu - e22) €8
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Let ¢ be the angle which the principal directioBs and O, make with the old axes

in the x;X, -plane. Then

tan2g = %8 (8)
(e:-ex)

The principal strainse, and e, given by equations (6a, b) and (7a). We find

(el:ei.l ! e2:e;2)

1 1
€.,6 = E(en +e,) £ \/Z(en _ezz)z +e.|.22 9

the shearing straig,, will be maximum when

= —(e,-e,)cos20-2e,sin260=0
co0s26 _ sin26 _ 1
1
B _E(eﬂ_eﬂ) \/elzz'*_i(en_ezz)z

(10a)

This gives the direction in which the shearingistrg, is maximum and maximum

value of e}, is given by equations (6¢) and (10a). We find

. 1
€2 pax " \/elzz +Z(e11 - e22)2 (10b)
From equations (9) and (10b), we obtain

€& "8

o T (1)
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This shows that maximum value of shearing straihal of the difference of two
principal strains in thegx, plane.

1.5 Anti-plane strain

A body is said to be in the state of anti-planeod®htion parallel tox;x, -plane if
U, =u, =0, u; =uy(x,%,).

Example of Anti-plane Deformation

Suppose that a force is applied along the line kwhéc parallel to xaxis and is

situated at a depth h below the free-surface @lastic isotropic half-space.

> X2

The resulting deformation is that of anti-plan@strdeformation with
u = ul(Xz,X3), U, =U; =0

Remark: - Two-dimensional problems in acoustics are antipktrean problems.

1.6 Plane stress deformation

MAL-643 14



An elastic body is said to be in the state of plattess deformation parallel to the
X X,-plane, if stress components, =7,,=7,,=0 and 7,,,7,,,7,, are independent
of X;.

From stress-strain relations,

r, =Ao; 9 +21;, JF=¢ =u; (1)
Ty =/w_ijﬂJ’Z/J(ui,j +Ui,i)

= rp=Aente, teg)t2ey,

= 0=(A+2u)e,+A(e, +ey,)

o _/1(611"'622) _ _A(un"'uz,z)
= Usz = €3 = A+20 = A +2u

Strain componenéssis not independent but it depends@pe,,, i.e.,e;; #0.
By definition of plane stress,ri3=7,3=0and non-zero stress components
arer,;,7,,,T;,.

From (1), we haveyy = A9 + 2811 = Ale1 + € +€33)+ 2111

24 .
= I = é‘y (e, +e,,)+ 21, (using value ofesz )
and
2AU
Too = + +2
2277 +2’u(ell €22)+ 2127

T15 = 20815 = plugs +Up)

Combining these equations, we get

MAL-643 15



U
A+2u 5“'3191+ﬂ(u“’ﬁ +Uﬁ,a)

ra’ﬁ =
where g = (911 + 622) = (Ul,l + u2,2)

Also

24
A+2u

&k = (@11 + e +e33) = (&1 +e20)

and from stress-strain relations,

_1+0 g
i =g fi T g%

We have

_1l+o0
e11E

1
ande,, = E[Tzz - UT11]

:1+0r
€2 E 12
-olr,, +1
€3 = uf 22)’ €;=€;=0

E

Using equation (2), the Equilibrium equations beesm

Ta’ﬁ,,b""Fa:O’ a,f=12

2Au -
:>|:A+2ﬂ5aﬂz91+ﬂ(ua,ﬂ +Ulg'a)i| +Fa =0

B

MAL-643
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| 20y 09 _
- | A+2u Oafs X +’u(u“vﬁﬁ+uﬁ.aﬁ)}+':a =0

2/1/,1 6791
| A+21 0%,

+,u(Dfua +uﬁ,&,)}+ Fo=0

+,UDan'

ZA,U + 4 6191
A+2u OXy

where

o _ 9% 9?
9 = (@1 + ) =(ug1 +upp) and O :0x—2+
1

6x2

2AU
A+2u

If we put A =
we get

(3 + )22t 103 = =F

a

and7,p = [/T5aﬁz91 + ,U(Ua,ﬁ + Uﬂ,a)]

0%(ryq +720)+ 1+ 0)(':1,1 + Fz,z) =0
The only compatibility equation to be satisfied is
(e1102 +€2011) = 281017

= (71122 + 72211)_ 0(711,11 + Tzzzz) 2(1"' 0) T1212

Here equilibrium equations become

Taﬂ,ﬂ = _Fa (Xll XZ)

MAL-643 17
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=TTy, = _Fl(xl’XZ)

(8)

Ty T4, =—F, (X17X2)

(9)

Differentiate (8) w.r.tX;and (9) w.r.t. X, and adding, we get

Tygpy F T + 205, v F +F,, =0

Tyt T o0 +‘(1+ U) (Tnzz FToo ~ U(Tllll Yy ))"' Fu+F,,=0

= |_T11,11 + r22,22 + T1122 + r22,11] + (1+ U)(Fl,l + FZ,Z) = O
= I.Dz(rll + Z-22)J + (1+ U)(Fl,l + FZ,Z) = O

which is required compatible equation.
1.7GENERALIZED PLANE STRESS

Consider a thin flat plate of thickness 2h. We téke middle plane of the plate as

X3 =0 plane so that the two faces of the platexgre h and x, = -h.

i N
U=

X 1
We make the following assumptions:

(a) The faces of plate are free from applied loads.
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(b) The surface forces acting on the edge (curvethce) of the plate lie in planes

parallel to the middle pIane(xS:O), i.e., parallel to xx, -plane and are
symmetrically distributed w.r.t the middle plarng=0.

(c) F;=0 and componentss, and F, of the body force are symmetrically

distributed w.r.t the middle plane.
Under these assumptions, the points of the middd@epwill not undergo any

deformation in thex,-direction.

Herel, =T, (x,,%,), T, =0,(x,X,), U, =0

T, =28,

&= 1’;“ (e,+8e,) where A = Azjg,u

g =20, 8+ T, 5 + U, )

where & =0,,

AlSO 6. = (611 + €7 + €3) =~ (611 + €35)
A+2u

The Navier’s equations are given by
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which is compatibility equation, whew =7, +T,,
1.8 Airy Stress Function

Considering Plane strain case

ul :ul(xl’XZ)’ u2 :u2(X1’X2) (1)
ou, ou,

SO 0 2
e, ox, 2 = o, 2)

_1(0u , 0duy

el Bt s 3
912 Z(GXZ " 6X1j ( )
r33= (e +ep) 4)
111 =(A+2p)e11 + Aep; (5)
To0 = (A +2u)ex; + ey (6)
T12 = 2187 (7)

Here equilibrium equations in the absence of bauyes areryz 5 =0
=Ty +755, =0 (8)
TontTy,=0 9)

Therefore, there exists an Airy’s stress functm(wl, x2)
MAL-643 20



(o3
(o3

2 2 2
_0°p _0°p _—0%¢
s.t. 1, =—, T, =— I, =

x> X 0X,0X,

(10)

using (10), (8) and (9) are identically satisfiétle compatibility equation is

2 2 2
6e211+0e§2=20e12 (11)
ox;,  0x 0X,0X,

Solving (5), (6), (7) for strains, we obtain theasts

_ 1 _
€, = 4,u(/1 +,u)[(/] +2,U)T11 /]Tzz]
1
&, = m[(/1 +20)r,, ~ ATy (12)
1.
e.|.2 - 2# 12

From (11) and (12), we obtain the compatibility agon in terms of stresses,

62[(/] + 2,u)r11 -/ 722] + 62[(/1 + 2,U)T22 - Tn] - 4(/] + /J)azrlz

13
05 ox? 0%,0%, 13)
Equation (10) and (13) give
0%0%p=0 (14)
2 2
where 02 Ea—2+ 4 5 (15)
6x1 0x2

or D4¢E Pr1it 201100 % P2202= 0
Here ¢ is biharmonic function in the absence of body éstc

From equation (2) to (5), we have stresses
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aUl 6u2
ry=— =(A+2u)L+1-2
x5 Oxg 0%

2
T22:a_;0:(/]+2,u)%+/1%

aXl aXZ aXl

- -0%p _ | 0u  0up
12 aXlaXZ 0X2 aXl

Solving first two equations of (16), we get

2/,1% = _ﬁﬂ + i O 2§0
aXl 6x2 2a
1

/jai = —&0+i[|2¢
ox 2 2a
2 6X2

Integrating (17), we get

_—d¢ 1
2, —E+2—ajDzwdxl+ f(x,)

__0¢ 1
24, = a—)(2+zj52¢dxz+g(xl)

where f(x,) and g(x,) are arbitrary constants.

Due to & equation of (16), we can neglefc(ixz) and g(xl).

Then equation (18) becomes

_a¢ 1 2
= +— | 0%d
ox, 2a 7o

240,

MAL-643
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_%¢

1 (2
+— | O°gdx
0x, 2aI v

2/, =

which gives displacement in case of plane strain.

Here - = (+au) (1- o), for plane strain
2a  2(A+ p)

and zi =(1+ J)_l for plane stress.
a

1.9Summary

In this chapter we have discussed about Planenstaincipal strains and directions

for plane strain deformation, Anti-plane strain gdne stress deformation aAdy

stress function.

Keywords Plane strain, Anti-plane strain, Plane stressegidized plane stress, Airy

stress function, Biharmonic function.

1.10 Self-assessment Questions

Q 1. Discuss the principal stresses and principattions of stress in a state of plane
stress.

Q 2. What is plane deformation? Derive Beltrami-Mitt compatibility equations for
plane deformation.

Q 3. Describe physically the Plane stress problamd derive the relevant field
equations.

Q 4. Obtain Navier’s equations for the Plane steaid for Plane stress problems.

Q 5. What is Generalized plane stress? Derivediesant field equations.
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Q 6. Explain Airy’s stress function.

1.11 Suggested Readings

1. 1.S. Sokolnikoff, Mathematical Theory of ElasticityTata McGraw Hill
Publishing Company Ltd., New Delhi.

2. Y.C. Fung, Foundations of Solid Mechanics, Prentled, New Delhi.

3. S. Timoshenko and N. Goodier, Theory of ElastiditgGraw Hill, New York.

4. Martin H. Sadd., Elasticity Theory, ApplicationstaNumerics AP (Elsevier).

5. A.E.H. Love, A Treatise on the Mathematical Theof\Elasticity, A" Ed., Dover

Publications, New York.
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Chapter - 2
Displacements and stresses in terms of two analyftienctions
2.1Objectives
This chapter is concerned with the general methosbtutions of two-dimensional
boundary value problems in elasticity. In this Cleapwe familiarize the students
with the General solution of Biharmonic equatione \dérive the formula for stresses
and displacements in terms of analytic functionse ¥hall discuss structure of

functions and the arbitrariness in selection ofcfioms ¢(z) and ¢(z) when the

displacements or the stresses are given. We dballdéscuss about first and second
boundary value problems in plane elasticity.

2.2Introduction

This chapter is devoted to a concise presentafiom® general method of solution of
certain broad classes of two-dimensional boundaiyesproblems in elasticity. The

method is based on a reduction of the boundaryevphoblems in elasticity to the

solutions of certain functional equations in a cterpdomain. The solution of the

fundamental biharmonic boundary value problem camhade to depend on a certain
general representation of the biharmonic functipnmmgans of two analytic functions

of a complex variable.

2.3 General solution of the Biharmonic equation:

We find the solution in terms of two analytic fulocts. We consider the Biharmonic

equation
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0%0%® =0 (1)
Let 0°® = P(x,,x,), then O?P, =0

i.e., B, is harmonic function.

Let

z=x +iX,, Z=X —iX,

1 - 1 -
I I

As P, is harmonic function in R (2D region), then thexgsts a conjugate harmonic
function P, s.t.
F(z)=P +iP, is analytic function in R.

Let

1

vi(2)=", [F(2)dz

2)
1 . .
=¢i(2)=7 [(R+iP,) dz= p, +ip,
where
1 1
P, :Z.[Pldzi P, :Z.[Pzdz

= ¢1(2) is also analytic function of z in R.

S0.¢i(2)= 2 F(2) =3 (A +iP,)

Also from (2), wi(z):(g%ﬂ%j%
1 1) 0%
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. 0 . 0
- 2103

:%(mipz){aﬁﬂaﬁJ

6X1 aXl
1 oM 1 ap
P === , and =P, =*2=
4t 0% P11 4% o P24
. . 1 1
Using C-R equationsp,, = p,, = 2 P, , Poy =—Pp, = 2 P,
Consider

Dz[q)_ PX — pzxz] = Pl _2p1,1 _2p2,2
1 1
=R-SR-5R=0

( 0%ppq = 2p11, 0% poxp = 2I02,2)

= ® — px — pPaXp is harmonic function. Henc® has the structure as

O~ ppy ~ PoXo = (3, %)

where oa(xl, x2)is also harmonic function in R.

Becauseq, is harmonic function in R, then there exists ecfion g,
S.t. op +igp =l//2(Z) is analytic.

So,

® = Py + poxo + (4, %) = Real[z¢n(2) + 5 (2)

If we denote the conjugate complex by bars, then

MAL-643 27

3)

(4)



20 =[241(2) + 2 (2) + o (2) + o (2)] (5)
wherey;(z) andy,(z) are arbitrary analytic functions of and X, .

2.4 Formula for stresses in terms of analytic functions

The components,; of the stress tensor can be expressed in terrttgediunctions
#dz) and ¢(2).

We denote

v(@2)=d2). v.(2)=v(2)

and® by U , which is stress function, then (5) of last agichn be written as

2 =[z4(2) + 20(2) + ¢ (2)+ 9 (2) (1)
The stresses in terms of Airy’s stress function are

r,=U,, , 1,=U,; , r,=-U,, 2
and

T11+iT22 =U,22 _iU,12
=i (U 12 HiU ,22) (3)
0

= _i@(u,l +iU,2)

Similarly
T22—iT12:UJ_1+iU 12:i(U’1+iU’2)
0
X1
Let z=x, +iX,, Z=X —iX,

1 - 1 -
—x=2rd) x=i(-2)
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z and z are independent variables.

0._0,9
ox, 0z 0z
i:.(i_ij
0X, 0z 0z
o .0 _,0
> —+i—=2—
ox, 0%, 0z

We calculate(U ,1+iU,2)

ou  .o0uU ouU
+

4 —=2—

0% 0X% 0z
From (1), we have

ou

2= AD+ 29 (DT ()

Y

Therefore, 2 +i Y - A2)+ 29 (2) + (2)
0% 0%y

From Eg. (3) and (5) on using (4) , we get

9_9

2 aazjlw(z) +25 () +7 (2]

T11+iT12:_i2(
(0 @ o
- [— azj[qa(z) + 26 () +T ()

0z

= +inp =@+ (2)-[2¢ (2 +F (2)]
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Similarly

9

0 — .
62+5j[¢(z)+ 25 (2)+@ (2)]

Tzz_irlzz(

=)+ (2)+[20 (2 +P"(2)]
Adding (6) and (7), we get
11 +Tpp = 2[¢ (2)+o (z)] = 4Real[p(2)]
Subtracting (6) from (7), we get
Tpp—T11- 2115 = 229 (2) +177"(Z)J
Taking its conjugate complex,
Top =T+ 2T = 2l7¢" (2)+y (Z)J

Adding these last two equations, we get

Iy -111=[29 (2)+7 (2)+ 29 (2)+y (2)]

Equations (8) & (10) give stresses in terms of amalytic functionsqa(z) & gl/(z).

Further adding Eq. (8) and (10), we get

= 2, =209 (2)+ ¢ (2| +[20' () + 7" (2) + 26 (2) + ¢ (2]

= 1,7 102+ 9 () +5120 () + 7 (2)+ 26 @)+ (2]

Subtracting Eq. (10) from (8), we get

21, =20¢(2)+ @' (2)] -[290"(2)+ & " (2) + 2 (2)+ " (2)]

or
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=162+ 0 (@) -5120 () + 7' @)+ 20 () v (2]

Therefore
r,, =2Real [40' @)+ {20 )+ (z)}}

r,,= 2 Real|¢ (2)]- Real ¢ (2) + ¢ (2))
and

1= 8 (- @0 @)-7(2)

2.5Displacements in terms of two analytic functions:

(Using (9))

For plane strain problems, the generalised Hodka¥g is given by

Ta,B = /119150,,3 + /J(Ualg + U,Ba)

=111 =9 +2uug; =U 5 (i)
Top =Adp +2Uuz5 =U 1 (ii)
r1p = gz +uz1)=-U 2 (i)
Therefore

Z-11 + Z-22 = 2/1191 + 2/’I(ul,l + u2,2)
=>U,,+U, = 2/1(uLl +u2,2)+ 2,u(ull +u2‘2)

=U,+tU, :2(/] +,U)791
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From Eq. (12) and 11(i), we get

A
m[u,zz"'u,u]"'zluuu =U,22
:meU +2,UU1’1 :U,22 +U 11_U 1 = DlZU -U 1
_ A 2
= 2,UU11 =-U 1 + 1_m |:|1U
A+2u
= 2,UU11 =-U 1 +2(/]—+/J)DfU
Similarly
A+2u
2pu,, =-U ‘22+2()l—+,u)D12U

But we know that
02U =P, = P, =4py; =4po>

Using it, equation (13) reduces to

201+ 2
and

201+2
2/Ju2,2 =-U 22 +ﬁ P2,

Integrating above equations w.r4. and x, , respectively, we get
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2(A+2u)

2,LIU1=—U’1+ ()I+,u) p1+f(X2)

and (14)
204 +2

2,uu2 =_U,2+ ( * IU) p2+g(X1)

(A +p)
where f(x,) and g(x,) are arbitrary constants.
Also from 11(iii), we have

I,=-U,,= ,u(u12 + u2,1)

Using (14), we get

(A +24)
(A+u)

(p1,2 + P2y >

- Le)r )

-U,, = ,u(uL2 +u2,1): {—U ot
o Fhe)*ale)

= f'(x,)= —S'(xl) = constant say = a
Integrating, we get

f(x2)=axo+ 8

g(x)=-ax +y

wherea, S,y are constants.

So f(xz) and g(xl) correspond to rigid body displacements and camnelgéected.

Then from (14), we have

_ L2+ 2u)
2pu, =-U, + (/“',U) Py
and

2(A+2u)
2uu, =-U,+50 K
HU, U, + (/]+/J) P>

MAL-643 33



2(A +2p)

2/'I(ul+iu2)=_(U,l+iU,2)+W(pl+ip2) (15)
2u(u, +iu,) :—[qb(z 7' )] Mg&(z) (on using (5) and Eq. (2) of
A+ u)

previous article)

(v, +iu,) = |kd2) - 20 (2) - (2)]. (16)
wherek = (()l/‘:i’?)) =3-40 , a7)

o being the Poisson’s ratio.
These are the expressions of displacements foe [s@ain problems.

It follows from equations (8), (9) and (16) tha¢ ttomponents,, of the stress tensor
and componentsi, of the displacement vector are analytic functiofghe real

variablesx, and x, throughout the interior of the region occupiedig body.

In the generalized plane stress problelmmust be replaced by = fj’; and if the
7

corresponding value of in (16) is denoted by

7_(/T+3,u):5/1+6,u:3—0'
My 3+2u 1+0

2.6 The structure of functions ¢(z)and ¢(z) :
Question.What is the difference in the forms of two setsusfctions (¢,¢) and

(@,) that correspond to the same stress distributidin
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Or discuss the arbitrariness in selection of fumnetigz)and ¢/(z) when the
displacements or the stresses are given by

I,,+7,, = 4Real[¢(2)]

T,,— T, +27,= 2[240" (2)+y (z)J

21, +i0,) = eel2) - 20/ (2) ()

Proof:

Case-I: - Let us consider two sets of functiofg¢) and (¢),() that correspond to

the same stress distribution in R.

Then from relation

1, +7, =4 Real[¢(z)]

We get

Real[¢ (2)] = Real[g) (2]

= qo(z) and ¢bl (z) can differ only at the most by a complex quantity.

= @ (2)= @(2) +ic, where c is real constant.

On integrating, we get

w(2)=dz)+icz+a (1)
wherea is any complex constant.

#z) and ¢¢(z) can be replaced by(z)and ¢(z)+icz+a and these will give same

stress distribution.
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Also
Tpp—T11+ 2715 = 2[760” (2)+w (Z)J
=20 (2)+¢ (2)=2¢ (2)+yo (2)
Using (1).¢ (2) = (2).
then we have
v (2)=yo (2)
On integrating twice, we geftg(z) = ¢(z)+ 8
So, the state of stress in R will be unalteredft) is replaced byfz)+icz+a and
w(2) byy(2)+B.

Case II- If displacement throughout R is satisfied.

Here
plu +iup) = [kel2) - 290 (2) - ' (2)
2(u +iu,) = |k (2) - 28(2) —ws(z)J
For same stress distribution, displacements arsidered same.
k)~ 20/ (2) - &' (2)| = [k (2) - 268 (2) - 5 (2)]

From (1), Putgg(z) = fz) +icz+a

#(2)=9(2)-ic
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= |kdlz) - 20 (2) -7 (2)] = |kl 2) + iczx + ka - 2 (2) +icz - T, (2))

= @(2)-7'(2) =icz(k +1) + ka

Substituteyo(z) = ¢/(2) + 28 (- wo0(2)=¢'(2)+ B)
7'(2)+B-7'(2)=iczlk +1)+ ka

=c=0, [B=ka

2.7First and Second Boundary Value Problems

In this article it is shown that the fundamentaubdary value problems in plane
elasticity can be reduced to the determinationuatfions ¢(z) and ¢(z) from the
prescribed values of certain combinations of tHesetions on the boundary of the
region.

First B.V.P.:-

Stresses or loads are known on the boundarysire_':,ses{r11 =T,.7,, :Tz) are

known on the boundary, ar(d12 =-U l2)

Then, we know that

U,= —szds = fl(s)+ const.
and
U,= —ITlds = fz(s)+ const

=>U,+iU, = f,(s)+i f,(s)+const.

= ¢2)+ 2¢'(2) +@'(2) = 1,(s) +if ,(s) + const

Second B.V.P-
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Here displacements are prescribed on the bounidary, andu, are given on
boundary.

Letu, =g,(8), u,=09,(9

= Ug +iup = gy(s) +iga(s)

But

2u(u, +iu,) = |kd2) - 20 (2) -0 (2)|

= 2u(9, +i9,) = [xel2) - 20 (2) -7 (2)

is known on boundary.

Such types of problems are known as Second B.V.P.

2.8Boundary conditions in terms of Normal and tangental components:

If Normal and tangential components of surfacetiwas are known on the boundary

of the body, then prove that B.C.’s are expressed a
N-iT =¢(z)+¢'(2)- ezm[qu'(z) +l/l"(Z)] on C (Boundary)
where N is Normal component and

T is Tangential component,

a is angle measured from the positive directiorXpfaxis to the normal.
Proof: Here ox;x, is one coordinate system.

0X1 X5 is other system obtained by rotation from the dowte systemox X .

(N =-l-l'l' T =Tl’2 or N = Z-]'.l’ T = i2)
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D

From the tensorial character, we have

r. =11t i,j =212

1] ip"jq” pq
Therefore

ri = lipliqrpq = a—pqrpq = Tpp or qu

H r r_
I'e" Tll+ Z-22 - Z-11+ Z-22

[
Tll - Ilpllqrpq

= Illl 1q qu + |12| 1q z-2q

=1
=12ur,, + 20 |1, +1%01,,
Sinceljj = cos(xi ,xj)

Therefore

MAL-643
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1, =cos a 1, +2 cosa sina 1, +sin’a 1,
Similarly
[ — =2 _ . SZ
T,, =sin’a 1,, — 2cosasing 71,, +Cos’ a T,
Ty, =lyploqT g = —SiN@cosa 71, + (cog @ -sin?a) r,, +sinacosa 1,

Now

Ty, — T, +21,=- [cosZa +i sin2cr] r,—2 [sinZa =i cosZa] r,+ [cosZa +i sin2cr] T,

2ia 2ia

. D e 2 .
=T, -0, t27,=-€"1, —i—[COSZO’ +1i SIHZO’] r,+e" 1,

| 2)
=e™ [Tzz It 2 le]
Subtracting (2) from (1), we get

2T1'1 -2 Tiz = |.(T11 + Tzz) -e’ (Tzz -, t 2 Iy, )J

but
Z-11 + T22 = 2[¢ (Z) + é (Z)]

Z-22 - Tll + 2I T12 = 2[2¢ (Z) + [/I (Z)]
Taking ril =N, Ti2 =T
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Sc, we have
2N-iT)=2p(2)+ 9 (2)- ¢ (20 (2) +¢'(2)]
= N-iT=¢(2)+9 (2)-e* (20 (2)+¢ ()

which is the required result.
2.9Summary
In this chapter we have discussed about the geselaion of Biharmonic equation.
We represented stresses and displacements in tdromnplex potentials. We also
discussed the arbitrariness in selection of fumstigfz)and ¢(z) when the
displacements or the stresses are given. We haweeddirst and second boundary
value problems in plane elasticity.
2.10 Keywords Plane strain, Plane stress, Biharmonic functioa)ydic functions,

Boundary value problems.
2.11 Self-assessment Questions
Q 1. Prove that the functional form of Airy’s gsefunction® is:

20 =[z¢n(2)+ 20 (2) + @2 (2) + @2 (2)]
Wherez/ll(z) and l//z(Z) are two arbitrary analytic functions of complexiahle.

Q 2. Starting with the equations of equilibriurhp® that for plane strain conditions

(v +iuy) = [kel2) - 20'(2) -7 (2),
where  ¢(z) andy(z) are analytic functions and =3-40, o being the

Poisson’s ratio.
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Q 3. Assuming plane strain conditions, obtain esgians for stresses

r,,, T,, and 7,, in terms of two analytic functions.

Q 4. Prove that boundary conditions are expressed a

N-iT =g(2)+ ¢ (2)-e? [z (2) + ¢ (2)] onC,

where Normal (N) and tangential (T) componentswfage tractions are known

on the boundary (C) of the body andx is angle measured from the positive

direction of X; -axis to the normal.

2.12
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Chapter-3

Viscoelastic Models
3.1  Objectives
In this chapter, we shall discuss about some ldfiaitions related to Viscoelastic
Materials and to derive constitutive equations tiwo viscoelastic models namely
Maxwell and Kelvin. Further, the creep and relaxagphenomena will be discussed.
3.2 Introduction
The property of the body to regain its original figaration (length, volume or shape)
when the deforming forces are removed is caldasticity. The materials or
substances which have property of elasticity aled¢&lastic materials. For example,
spring. For an elastic material there exists atorene coordination between stress
and strain. In the simplest case, there are sigbadgc equations giving the strain
components in terms of the stresses or vice velfstney are linear, they are known
as Hooke’s law. Some materials show a pronoundigkimce of the rate of loading,
the strain being larger if the stress has grownenstowly to its final value. The same
materials display creep, that is, an increasingmedtion under sustained load, the
rate of strain depending on the stress. Such radtesire called viscoelastic. The
constitutive equations of these materials may libeeilinear or nonlinear. The

viscoelastic materials are time dependent whilstiglanaterials are time independent.
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3.3  Viscoelastic Materials
Elastic material: The materials or substances which have propdrsglasticity are

called elastic materials. For example spring, kddsll.

r<—'—/\/\/\/\/\—’—>r

Spring before deformation

r W T
Spring after deformation
Then according to Hook’s law, within elastic limihe stress developed is directly

proportional to the strain produced in a body, i.e.

stressa strain,
or stresss E x strain,

i.e.,t =Ee , where E is a constant and is known as Moduluglasticity of the

material of the body or Young’'s Modulus.

Viscosity: Viscosity is the property of a fluid (liquid orag) by virtue of which an
internal frictional force comes into play when tthaéid in motion and opposes the
relative motion of its different layers. It is alsalled fluid friction.

Viscous materiat The materials having the property of viscositg aalled viscous

materials. For example: honey, dashpot.
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Dashpot: Consider the dashpot shown in figure below. A pisi® moving in a

cylinder with a perforated bottom so that no airtigpped inside. Between the
cylinder and the piston wall, there is a ratheceotiss lubricant (liquid) so that a force
is needed to displace the piston. The stronger fthise, the faster the piston will

move.

R B BB Piston
& .I:-:::'.:.i.“' / + T
\

Liquid

Perforated material

Dashpot

3.4 Governing equation for viscous material:
Let L be the original length of dashpot and be the extension produced in the

dashpot during deformation, then after deformalémgth of dashpot is L k
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L+1

Now M = a +% = a (*."L is constant)
ot ot ot ot

Sinceezlt = | =eL

ﬂ = a(eL) = La_e

ot ot ot

Then (1)= M = La—e
ot ot

Let 7 be the stress developed in dashpot, then we have

o ol +L)
ot
:T:KM:KLa—e:qa—e where =KL
ot ot ot

Therefore in viscous medium, the basic governingagqn is

stress a rate of strain,i.e.,

Ta a_e = r:n% =ne
ot ot ’

where/] is coefficient of viscosity.
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The quantity & is called the strain rate where dot representsnarg or partial

derivatives with respect to time t. Thus, a mateviaose stress is proportional to the

strain rate is called a viscous material.

3.5 Three basic viscoelastic materials (or models)

Linear viscoelastic materials are the combinatibrelastic and viscous materials.

Viscoelastic materials (models) are constructethbycombining spring and dashpot.
a) Maxwell Model (or Maxwell materials):- In this model, spring and dashpot

are connected in series. This model is also cilaxwell fluid.

T—/ VNNV IT

Maxwell model

b) Kelvin Model: - In this model, spring and dashpot are connectgdiallel

A VA VA VA N

Kelvin model
c) Standard Linear Solid (or three parameter solid):-In this model, a spring

is connected in series with a Kelvin’s model.
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PP AVAVA VAN . esT

Standard Linear Solid

For every model, we shall consider following thteegs:
1. Constitutive equation (stress-strain relations)

2. Creep Phase

3. Relaxation Phase

Principle of Superpositior If stressr; produces strai®, and stresg, produces
strain e, then the total stresg + 7, produces straig +¢e,.

Heaviside’s unit step function:lt is denoted ad (t) or u(t) or A(t) and is defined

1, t>0
asH(t):{O <0

The functionH (t) is discontinuous at t = 0.
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H(t)

M

Dirac delta function: It is denoted a®)(t) and is defined as

Then Ta(t) dt = [olt) dt =1

Creep PhaseCreep is the slow increasing deformation of a ntander constant
stress and the rate of strain depends upon tresstre
For this, consider the stress cycle

r(t)=r,H(t), where H(t) is unit step function. So

T, , t>0
rt) =4 °
0 , t<O

For an elastic material, the strain cycle is

elt)=eH(t) , where H(t) is unit step function. So
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g, t>0
t) =
< {o , 1<0

But for viscoelastic material, the correspondinrgistcycle is,e(t) = 7pJ(t)

where J(t) an increasing function of tJ(t) is different for different materials and is

called creep compliance.

Relaxation PhaseConsider the strain cycle
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eft) = epH (1)

| & , t>0
"] 0o, t<oO

For an elastic material

r(t)=roH(t)

|, t>0
0 ,t<0

For viscoelastic material(t) = eyY(t) ,whereY(t)=0,t<0
Y(t) is called Relaxation Modulus.
Y(t) is a decreasing function of t and is differentdiferent materials.

r

4

T Relaxation Phase

Creep Phase :
I
I
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e(t)

Relaxation Phase
Creep Phase

3.6 Maxwell Model

A spring and a dashpot are connected in series.

L

e

f

e

e ANAANA |f

Since elements are connected in series. Hencegatlon is distributed on both
elements.

If e is the total elongation them=¢€ +¢€" (1)
where€' is the elongation in the spring aed is the elongation in the dashpot.

The stress-strain relation for springriss E€ (2)

U

The stress-strain relation for dashpor isn%—et 3)

To obtain the stress-strain relation for the Maxwtdel, eliminating €', € from

equations (1)-(3).
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From (1), differentiate w.r.t. time t,
e=¢eg+¢'

de _1lor 1
—=——"+

ot E ot n

orr+%r':/7é (4)

Comparing it with the standard stress-strain refafor a viscoelastic material

m gkr I gke |
Zpk—ZZdet—k with  pp =1

T+l +pol+.......... =(Qpet+t e+ gl +.......
_n - -
Wehavepl— E ’ qo_o v O =17

Equation (4) can be re-written as

r‘+§r:Ee (5)

or r+L=Ee, (6)

*

t

wheret” = E is Relaxation time.

Equation (5) or (6) is required constitutive eqoat{or stress-strain relation) for a
Maxwell model.

Creep Phase for Maxwell model:
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Consider the stress cycle, i.e. we apply a constagdgs at t = 0 and discuss the

behaviour of strain.

r(t)=roH (t)

r, , t>0
= 7
{O,t<0 (7)

From equation (5) and (7)

Integrating w.r.t. ‘', we get
eft)="Ct+g, (8
U
whereegy is constant of integration.
To find e, we integrate equation (6) w.r.t. time (t) betwdem, £)

jor s,

& r &
dt + e dt=E
Jrasely

=&

e)- 1l g)+U€o . j:— dt} ~ € [ole)-el-¢]

But 7(-£)=¢(-£)=0
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Since material is in the natural state, therefore
r(£)+tr—,?£ = E €l¢)
Taking limit ass —» 0", therefore
r(0*)=E €o*) 9)
Takingt — 0" in equation (8), we get
e(0+): €

L (Using (9))

Using this value in equation (8), we get

e(t):mt+r_ézro(£+éJ:E(t+t*)

n 7 7

Comparing with the definition of creep compliance
elt)=103(t)

So, J(t)= (t+t*) (10)

3 -
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It is observed that for a fixed amount of strels,gtrain instantly takes a finite value,
which is the behaviour of an elastic solid. So, lfoge values of t, the deformation
goes infinitely, which is behaviour of a viscousid.

Relaxation Phase for Maxwell model:

We assume that the strain cycle is given below weadliscuss behaviour of stress

under constant strain.
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, >0
:{eoo t<O0 )

From equation (6), for t > 0, we get

T _
r++—=0

t

1
[t t/
Foet =gt

t *
Solution isr(t)e% = [0dt + constanfro)
>

r(t) = roe% : (12)
whererg is constant of integration.
Taking limit ast — 0" in equation (12), we get
r(0+): o
= Ee(0+): Io = Tp = Egp
Substituting the value of ; in equation (12), we get

_t * _t *
r(t)=Ee, e/t = eO[Ee%} (13)

Equation (13) is required stress cycle.

Comparing with definition o (t),
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Relaxation Phase

v
-

For a finite amount of strain, the Maxwell Modelhébits a finite amount of stress
instantly and then it goes on decreasing.

For large values of t, the Maxwell material has ptete Relaxation.
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3.7 Kelvin Model

In this model a spring and a dashpot are connectpdrallel.

T
NN
e
T «—] " . e T

Suppose model is acted upon by a force P caushegssl . Sine elements are
parallel, soT is distributed itself upon both elements.

Hence r=71'+1", 1)
wherer'is the stress on spring amd| is the stress on the dashpot.

Let € is the elongation of Kelvin element (model).

The stress-strain relation for a springis= Ee (2)
The stress-strain relation for a dashpot'is /73—(: 3)

To obtain the stress-strain relation for the Keleiement (model), eliminating’ and
r" from equations (1)-(3).

From (1)

7 =Ee+ne (4)
Comparing it with the standard stress-strain retafior a viscoelastic material, we

have

QG =€, @ =7
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Equation (4) can be re-written as

de E T
_+_e=_

ot n n

Ora—e+—f:£
ot t

wheret” :% = Relaxation time.

Equations (4) and (6) are required stress-straatioa for Kelvin Model.

Creep Phase:

Consider the stress cycle
r{t) =7oH (t)

|, t>0
0 ,t<0

From equation (4) and (7), fort >0

_ oe oe E 1,
r,=Ee+n— or —+—e=—
ot ot n n

Its integrating factor is given by

1

—dt |78
I.LF. = eIt :e%

So, solution of equation is

e(t)e% = J'%et‘* dt+c,
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_Togelt +0p
Ui
Ip _%
Or e(t)=E+cle t (8)

where E = % and c; is constant of integration.
t

To findc;, we integrate equation (5) w.r.t. time (t) betwéela, 5)

Ta—edt+ET

18
t)dt=— | rdt
O e |

n

But e(-£)=0

Since material is in the natural state, therefore

e(£)+§ [e(t) dt =%r0 £
0

Since viscoelastic material is a combination o§gtaand viscous material. Hence, for

r =1gfor t> 0, there is instant strasgpy for t > 0.
&

So, J'e(t)dt =eyf
0

Therefore, e(¢) + Eeoe =1 T,€
Ui Ui

Taking £ - 0, we havee(0+)= 0 9
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Takingt — 0" in equation (8), we get
dor)=10 46,20
E

=g =-2 (Using (9))

Using this value in equation (8), we get

e(t)zm—ﬁe_% :E{l_e_%l (10)

E E E

This is the required strain cycle.

T

4

0 Creep Phase Relaxation Phase
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e(t)

Relaxation Phase

Creep Phase

We observe that under finite load, the model ithtideforms slowly. So, for small
value of t, i.e.t — 0,e(t)=0.

For large value of t, i.et, - o,
eft)=0 =e, , i.e., under finite stress, there is finite strai

This is the behaviour of an elastic solid.
Sine element deform slowly, so Kelvin element halsigkd elasticity.

Comparing with the definition of creep compliance

elt) =70J(t)
So, J(t)= é(l— e_% j

Relaxation Phase

Consider the strain cycle is

eft) = epH (1)
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| &, t>0
0 , t<O

It is not possible since Kelvin model does notiatteite strain instantaneously.

Suppose at=t; >0

eft)=e and g =2

_tl
l-e %} (Using (10)) (11)

From equation (6), fort > 0 we get

0+2=" o r(t)=Te = rt)=Eq
t Ui t
_tl
:ro{l—e %}= finitevalue

_tl
= r(t)= ET—Oll—e %
E
We observe that(t) is independent of t.

The relaxation in Kelvin element is incomplete cgithere is a stress forever.
Relaxation Modulus:

We haver = Ee+/7(3—te

it oft) = epH 1)

Then

r = EeH 1)+ (M 1) = ol EH (1) + ()]

- é = EH(t) +75(t) = Y (t)
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3.8  Summary
We have studied about elastic and viscoelastic nafge Constitutive equations of
two viscoelastic models namely Maxwell and Kelviave been derived. We have
also discussed about creep and relaxation phenomena
3.9 Keywords: Elastic material, Viscoelastic material, dashpoglv Model,
Maxwell Model, creep and relaxation phase.
3.10 Self —assessment Questions
Q 1. Define elastic and viscoelastic materials gatth example.
Q 2. Describe the Kelvin solid model of viscoelei$yi Find its constitutive equation
and hence discuss the creep phase and relaxat@se.ph
Q 3. Describe the Maxwell solid model of viscodlast. Find its constitutive
equation and hence discuss the creep phase ardtretaphase.
3.11 Suggested Readings

1. Y.C. Fung, Foundations of Solid Mechanics, Prentied, New Delhi.

2. W. Flugge, Viscoelasticity, Springer Verlag.

3. R.M. Christensen, Theory of Viscoelasticity- Anrbduction, 2nd Edition,

1982, Academic Press Inc., New York.
4. D.R. Bland, The Theory of Linear Viscoelasticityer§amon, New York,

1960.
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Chapter 4

Standard Linear Solid and Generalised ViscoelastiModels
4.1  Objectives
In this chapter, we shall discuss about more cara@d models: Standard Linear
Solid and Generalised Viscoelastic Models. We d@etheir constitutive equations.
Further, the creep and relaxation phenomena widiXpdained.
4.2  Introduction
In Standard Linear Solid, a spring and a Kelvin slodre connected in series.
Further, there are two ways of systematically bngdup more complicated models:
the Kelvin chain and the Maxwell model. In the fermman arbitrary number of
different Kelvin units are connected in seriestHa Maxwell model, Maxwell units
are connected in parallel. These are respectivaled, the Generalized Maxwell
Model andGeneralized Kelvin Model.
4.3 Standard linear solid model (S.L.S.) or Three Pammeter Solid

In SLS, a spring and a Kelvin model are conneateskries.

w\/\—
€
€,

re  AANANAL I
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Suppose model is under the action of applied fercausing stressg . Since a spring
and a Kelvin model are connected in series, sogakbon is distributed itself over the
spring and the Kelvin model.

If e is the total elongation, thex=¢, + e, (2)

where g is the elongation in the spring areg is the elongation for the Kelvin

model.
The stress-strain relation for springris E;g (2)
The stress-strain relation for the Kelvin modet is Exe, +172€ 3

Eliminating  ande, from (1), (2) and (3).

E,e+n,6=E,(e +&,)+n,(¢ +¢,)
= E,e +17,6 +(E, +17,8,)
_ E,r r

N, —+T
E, 7, E,

= r{l+%} +/72L

1 El

E1+ E2 R T
T =Exe+16-1o—
[ E, } 2€+/e—1p E

R/ SRR =1 = NN 1= A

Ei+E; B +Ey; B +E

=T+ pf =qoe+qe 4)
where p, = > Q= E.E, Q= n.E (5)
E,+E, E +E, E, +E,

Equation (4) is the stress-strain relation for SLS.
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Creep phase:
Consider the stress cycle

r(t)=roH(t) , i.e.,

r, , t>0
r(t) =
0 , t<O

From equation (4) and (6), we have
To+0=qpet+ e

:%+me:ﬁ
o ¢ o}

which is linear differential equation in e(t).

q 1
[t [t t/,
F=e% =gt :eA

The solution will be

t/. t/.
e(t)e% :IEeA dt + const.
i
U ino
e(t) L =0g/t to, +const.
G

_t X
eft) = %’tz* + ole/%

-t/ -t/
e(t):T—O&‘FOleA :T—0+qu
do do

where ¢ is the constant of integration.
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To find ¢;:

We integrate equation (4) w.r.t. 't betweéne, £),

Tr( dt + plj dt—qOJ.e(t)dt+q1J.e(t)dt

—-& —-£ —& —&

N j Odt + j rodt + pir(t)° . = ag j Odt + qq j e(t)dt + cpe(t),
-£ 0 -£ 0

06 + pylele) - (- £) = o elt)t + ) el ]

£
= 10 + prr(€) = do [ eft)dt + cuele)
0
= 1€ + pir(€) = goe( finitequantity) + rele)
Taking € - 0, we have
plr(OJr ) = x0+ q1e(OJr )
= plr(0+): qle(0+)

and r(0+): 7o

From equation (8), taking — 0" and using equation (9),

_I _ Pilo
We gete(0+)——°+cl——
Qo Rl

py7 _@:_@(1_ p1on
@ d Y 2l
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Pl _ 72 Eo_ By 4
qa E+tE 7 EBAE

As we have

Putting value ofc; in equation (8), we get

_t .
ety =20 _ﬁ(l_ P1do Jeﬁz
do Qo i

-t/
= e(t) :Ell—(l—%Je/‘z ] (10)

Jdo Ch
which is required strain cycle.

o Qo th

o(e) =0
Jdo

Since% <1 = b < i
g, 4 Yo

Pl Lo e(0) < &)
G Qo

=

Under finite stress for small values of t, the mateattains a finite strain and then it
increases. For large values of t there is a fidgrmation which is the behaviour of

an elastic solid. Hence, SLS is also called asthsrameter solid.
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e(t) _—

Creep compliance is given by

elt). )= i[l—(l—mje_%ﬂ

Io fdo th

Relaxation Phase

Consider the strain cycle is

elt)=eH (1), ie.,

>0
el = { i)o tt><o ()
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From equation (4) and (11), we have
T+ Pl =0qee + 0

:>ﬂ+ir :m
ot p o]

1
—dt t
I.F.:ej"’l :e/pl

which is Linear differential equation.

r(t)t-i‘%Jl = f%‘ieoe%l dt + const.

i

= 7(t) = qoe + 6 P (12)
wherec, is the constant of integration.

Takingt — 0" in equation (12) and using equation (9), we get

T(0+):QO90 +Cp = 40" :%

_ 1% _ th
=>C=——-( eo—-qeol-—j
Tp 0 0( P1do

Putting value ofc, in equation (12), we have

r(t>=qoe{1-(1_ije‘t pl}

P10

which is required stress-cycle.

Relaxation Modulus is given by
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w0=“0:%%—@-iljg%ﬁ

g P10
- G _ . G
Now 7(0) = qgep % =gy
0 P10 Py
r(») = do&
Since

%<1 — &<i
G g

ql Q1eo
S0 <t S Qe <
i Py ’ Py

= 1(0) <7(0)

e(?)

N
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(1)

«

Remark:

If we take ,p, =t, , &:tf

= J(t) =i{1—[1—%e_%ﬂ

Jo t2
0O ) -t
andY(t) = gq| 1+ t—ZD—l e /tl
t
4.4 Generalized Maxwell Model

In Generalized Maxwell Modek Maxwell elements are connected in parallel.
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|

T

Let ¢ be elongation in each Maxwell element due to &oplstressr. Since

elongation will be same in each element. So,

& =€ =.......= g =e(say)

The stresg distributes itself over the k elements.

k
Therefore, 7=>'r,

r=1
The Stress-Strain relation for rth Maxwell Model

ai.kr_f:Erai:Er%
ot 0 ot ot

(1)

(2)

®3)

To obtain Stress-Strain relation for GeneralizedkWell Model, we eliminate

1,72,....T from equations (2) and (3). We use the methodapiace transform.

We denotel (f (t)) = f(s)
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Taking the Laplace transform of equations (2) &@)d (

Kk
7(s)= 2.7t (s) (4)

sty (9) -1, 0)+ 7 = & [s(6)-<00]

Since material in the natural state att =0
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CRO S

tr
To find r(t), we take the inverse Laplace transform and by usomyGlution

theorem

Creep phase:
This is same as we calculated for single element.
Relaxation phase:

Consider the strain cycle is

elt)=eH(t), i.e.,

g, t>0
t) =
< {o , 1<0

From equation (3)t >0

ai+i —Era;.oz

ot (3" at

Integrating above equation
J :
Solution isz, (t)e’ Y =¢;
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7, (t)=c e%J 7)
wherec, is constant of integration.

Takingt =0in equation (7), we get

7 (0)=c (8)
We integrate equation (3) w.r.t. time (t) betwe(er:f,g)

T‘aa—rtfdu T:—gdt:Er Taaitfdt
—-& - —&
0 O

rr(e)—rr(—e){ Touf dt}a[e(e)—e(—sﬂ

-0 o

But rr(—g):e(—£)=0
Taking € - 0, we have

r.(0*)=E.€lo*) 9)

Takingt — 0" in equation (6), we get

e(0+): €
r. 0"
= =g (Using (9))
EI’
= ¢ =gE, (Using equation (8))

Hence equation (7) gives

-t
Iy (t) = eOEreA
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The stress cycle for Generalized Maxwell Model

Kk k -t/
T(t)zzrr(t):eozEre%'

r=1 r=1

Comparing with the definition of Relaxation Modulus

The stress-strain relation can be written as

ae(t,')Y(t —t')dt’
ot

t
r(t) = |
0

4 .5Generalized Kelvin Model

In Generalized Kelvin Modelk' Kelvin elements are connected in series under the

applied stress.

M4 VA VA VA N A VA VA Vi U

T« —— = -

%T

Since the elements are connected in series. Swyalione is distributed on each

element.

If e,e,,......a are the elongation of*12" andkth Kelvin element, then
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e=>e 1)

The stres will be same over each element.

The Stress-Strain relation for rth Kelvin Model is

T:”r[ér +?_D] (2)
r

To obtain Stress-Strain relation for Generalizeti/ikeModel, we eliminate

e,e,....e¢ from equations (1) and (2). We use the methodapiace transform.
We denotel (f (t))= (s)

Taking the Laplace transform of equations (1) &)d (

e(9)=35(s) @

=1

-

r(s)=n, {Sér (s)-e (0) + ért_(DS)}

r

But & (0)=0, since material in the natural state at t = 0

Or g (s)= _ s (4)

Using equation (4) in equation (3), we have
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S+
tr

K1
&(s)=7(s) 2 ———

r—1,7r|: ]
To finde(t), we take the inverse Laplace transform and bygu€ionvolution theorem

t k _t-t)/

)= [7(t) e /{m' (5)
0 r=1’7r

This is the required stress-strain relation for@eneralized Kelvin model.

Creep phase

Consider the stress cycle

r(t)=1oH(t) , ie.,

r, , t>0
d0={0 (<0 (6)

From equation (2),t>0

er +i:T_0
tr /i

To integrate it, we have

1

—dt J
u] u]
IF.=el =¢t

The solution will be

er(t)e%] = I;—Oe%idt + const.
r
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(t)e/ =0

+ const.

/tr

o -t
er(t):r;,’iweA

r

wherec, is the constant of integration.
To find ¢, :

We taket - 0

_ Lolr Io
So,e (07) =T +¢, =L +¢
E ' E, '

We integrate equation (2) w.r.t. time (t) betwderz, )

& (&) — e (—¢) + (finitequantity) . = ;—O £

r
Making £ — Oande (-£) =0=¢€ (0")= 0

Using in equation (8), we have

4 T
_O"'Cr =0:>Cr -_:0
r r

Put the value in equation (7), we obtain

-t -t
er(t):&—r_oeA :T_O 1_8A
E E E,

r
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e

E,

k
Thene(t) =79
=

which is required strain cycle due to the stressecy(t) = 7oH (t)
Creep compliance is obtained as under:

1- e%j

E,

J(t)=@=i

Io

Differentiate w.r.t. ‘t’,

The stress-strain relation can be written as

t
e(t) = [r(t') d(td_t,) I(t-t)dt’ (9)
0

Example:-
A viscoelastic material is represented by a chéi® l§elvin elements.
Let q be reference of stress and T be referena tim

Assume that the following viscoelastic co-officiatiold for the Kelvin elements.

Ist elementq, =2q , g, =2qT
2" elementq, =q , g, =4qT

3% elementq, = 1.5q , q, = 165qT
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Find J(t), J(s)

The standard stress-strain relation for a Kelvamaint is

T =qpe+qé=Ee+ne

For Ist elemenE, =2q , 77, =2qT
2" elementE, =q , 77, =4qT

3% elementE, =15q , 77, = 165qT

We haver(t) = rgH (t)

7(s) = %0

By definition of creep compliance,
elt) =703(t)
&(s)=13(s)

For the Kelvin chain, we have

o) =rle)> L

r:1,7{8+ 1]
tD
:

tP="A =7
By

ty="12 =47
=

ty="18 =117
Es
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Using equation (2) and (3) and the valuess;p,ftrD in equation (4), we have

rod(s)=22 I 1 + =

S 2qT(s+1j 4qT(s+1j 16.5qT(s+1J
T 4T 11T

N | 1 1 1
I(s)= Ts N 1y 1
q S+ = S+ — 165 s+ —
T 4T 11T

(To find J (t), we will take the inverse Laplaceamsform)

=N_1 1|T T 14T 4T 1 |11 11T
=t s —TI"wl s — 1|} 1
q| 2T | s S+ 4T | s S+ _— 165T | s S+ _—
T 4T 11T
SO S Y U P S
q 2|s o4 S g4+t | 3S o4 1
T 4T 11T

o0=23 e o P ) 2ot |
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4.6 Summary
We have studied about Standard Linear Solid Model Generalised viscoelastic
models namely Maxwell and Kelvin. The constitutaguations of these models have

been derived. We have also studied about creepetapcation phenomena.

4.7 Keywords: Standard Linear Solid, Generalised Kelvin modelné&ealised
Maxwell model, creep phase, relaxation phase

4.8 Self-assessment Questions

Q1. Describe the Standard Linear Solid model ofogtasticity. Find its constitutive
equation. Also discuss its creep phase and retaxatiase.

Q2. Describe the Generalised Kelvin model of visastecity. Find its constitutive
equation and hence discuss the creep phase test.

Q3. Describe the Generalised Maxwell model of wasticity. Find its constitutive
equation and hence discuss the relaxation phase.

4.9 Suggested Readings
1. Y.C. Fung, Foundations of Solid Mechanics, Prentiedd, New Delhi.
2. W. Flugge, Viscoelasticity, Springer Verlag.
3. R.M. Christensen, Theory of Viscoelasticity- Anrbduction, 2nd Edition,

1982, Academic Press Inc., New York.

4. D.R. Bland, The Theory of Linear Viscoelasticityer§amon, New York,

1960.

MAL-643 86



Chapter 5

Correspondence Principle of linear viscoelasticitand its applications
5.1  Objectives
In this chapter, we shall discuss about CorresputelePrinciple of linear
viscoelasticity and its applications to the defatiora of a viscoelastic thick-walled
tube in plane strain.
5.2  Introduction
In this chapter, some simple stress problems inwgha viscoelastic material have
been considered and solved. The general problerthassame for elastic and
viscoelastic structures. In both cases, the thrasicbsets of equations must be
satisfied: the equilibrium equations, the kinematitations, and the constitutive
equations of the material. The first two of these @ommon to elastic and
viscoelastic materials. The only difference betwekastic and viscoelastic materials
is in the constitutive equations of the materi&or viscoelastic materials, Hooke’s
law is to be replaced by another equation. Thussthetion of viscoelastic problem
can be obtained with the help of corresponding temiuof elastic problem. If the
solution of an elastic problem is known, the Lapldcansformed solution of the

corresponding viscoelastic problem can be obtamedeplacing elastic moduli:

and K by the corresponding transformed modgi and K respectively and the

actual load by their Laplace transform. This iswnas Correspondence Principle of
linear viscoelasticity.
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5.3 Correspondence Principle of linear viscoelastigjt

We know that the stress-strain relation for 1-Oresdastic material is

o'r e
Pr =20
Z‘ " at" Zr: "ot

Or P(r) = Q(e)

_ o'r a d0'e
WhereP—Z P, el Q—qu e

Generalization: Consider a stress problem, let a body consistihyatume V

bounded by the surface S.

S
The basic equations are
1. Equations of Equilibriumzj; j +F =0 (2)
: . : 1
2. Kinematic Relationseg, :E(Ui'j +u“) (2)

3. Boundary conditions are:

T'=rp,=f on S @)

or u =¢ on S
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where f, and ¢ are prescribed functions.

(4)

4. Constitutive equations: For an elastic materjak A9, 7 + 2u¢;

We define, Deviatoric strairgj; and Deviatoric stresg;; where

()

1
&j = §j —5195ij (F=8i)

1
Pij = Tij ‘595@ (6=r3) (6)

Using equation (5) and (6) in equation (4), we get
1 1
P; +§95ij =A9; ﬂ+2ﬂ[£ij +§195u}

= By +%85ij :Pl +§1u}5ij d+2ug; =Kg; 9 +2u¢, (7)

whereK = A +§,u: Bulk Modulus
Taking i =] in equation (4), we have

1, = A0, 9+2ue, = (34 +2u)9 :3[;| +§,ujﬂ

= 6 =3KJ (8)

Using (8) in equation (7), we have
1
Pij *3 (ak95) )= K59 + 205
9)

= Pij = 20
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Equation (1)-(3) and (8)-(9) hold for an elastictenal. For a viscoelastic material,
equation (1) holds for a continuous material etagtiviscoelastic.

We write the viscoelastic stress-strain relation3® viscoelastic material:

, 0" P; _ , argij
P _qu r (10)
o 5100 500
P'(pn):Q'(‘fij)

and P"(6)=Q"(¥)

(11)

where

m ar n a
P = ! , "= ;
rZ:;,lor P Q ;q 5

al‘
P" n
and Z pr ol Q qu 5

Remark: Equation (9) and (10a) is for deviatoric changdsan elastic and
viscoelastic material and equation (8) and (10Wdpisthe dilatational changes of an
elastic and viscoelastic material respectively.

Correspondence Principle:

Consider a continuous material under constant Ié&d. an elastic body, nothing

depends upon time. But for a viscoelastic mateggls;; 6,7, fi,¢q depends upon

time.

We use the method of Laplace transforms.
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We take L.T. of equations (1), (3) and (11), weadbt

Hjj*tR=0 inV (12)
L = fl on S (13)
or t=¢ on S
P’(S)l_oij = Q'(S)_”
(14)

and P"(s)g =Q"(s)d
where
PEH=30s . Q=3as

r=1 r=1 (15)

and P"(s) = 3 p's” Q"(s)ziq;'sr
=1 r=1

r

Assuming that there is no deformation at t=0.

We define Transform shear modulxgand Transform bulk modquK[ by the

relation
2°(9)= 28]
P'(s)
Q'(s) (o)
and 3K(s)=
P"(s)
Then equation (14) becomes
p; = Z,UD(S)EH
17)

and 8 =3K"(s)9

Equations (12), (13) and (17) hold for a viscoétastaterial.
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On comparing the two sets of equations for an ielasiaterial and viscoelastic

material, we observe that the quantitieg;,s;,.0,7,fi,¢ are replaced by

bj.&;.0.9, fi,¢ andu andK are replaced by“and K " respectively.

Hence, we have the following Correspondence Pri@@pLinear Viscoelasticity:
“If we know the solution of any problem for an dlasnaterial, then the Transform of
solution of corresponding viscoelastic material da® known by replacing the

quantities pj, &;;,6,7, fj,¢ by their Laplace transforms and the elastic contst

puand K are replaced b)uDand KH respectively.”

5.4  Applications of Correspondence Principle

Problem — I. Deformation of long thick walled tube due to intgrpressurel; and
external pressuré,.

Problem — II: Deformation of thick walled tube under internal gmere7; and tube

is in contact with a rigid medium.

Problem — |

Consider a long thick walled tube of inner radiasdnd external radius ‘b’ under no
external forces.

Let there be internal pressurg andinternal pressurer, on the tube.
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Since the tube is ring, it is plane strain problem.

Let the axis of the tube is taken along z-axis.dNeose thexx, plane.

Choosing the cylindrical co-ordinate systéml?, Z).

Due to axial symmetryi =0

06

Therefore
u =u() ,u,=0, u,=0 (1)
Therefore equation of equilibrium gives
(A + p)grad divu + £0%u+F =0
(A +2u)grad divu - zcurlcurlu =0

By equation (1)curlcurlu=0
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So, equation of equilibrium givegrad divu=0

d(du u}_
=—|—+=|=0
dr\dr r

Integrating, we havé% +Ej =2A
rr

:(r%wj:ZAr =ru=Ar’+B
r
where B is constant of integration.

:>u:Ar+E
r

Boundary conditions are:

r, =-r,,when r=a

rr

andr, =-1, , when r =b

(A is constant)

(2)

3)

From equation (2), the stresses are given by

r; =09+ 2.k

=71, =Adivu+2ue,

du wu ou
= —=+—=|+2u—
(dr rj ”ar

=2AA+ Zy(A—Ej

r.2

= v, =20+ w2 -5
r

andr,, = Adivu+2ue,
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= gy =2(A+ p) A+ Zﬂ[izj
r

andr, =o(r, +1,)
From equations (3) and (4), solving for A, B

B
2(A + p)A+2p (——zj =-7,

a

B\_

and 2 (A + u)A+2u )7

We get,

_ra®-r,b?

A_Z(/] +u)(p? -a?)’ i 2u(p? -a2)

r,a® -r,b’

ey el )
3

Using in equations (2), (4) and (5), the elastiatson is

2 _ .12 _ 2.2
rna“ —1ob r+(r1 lrz)b a1

—u=
Z(K +/Jj(b2 _ az) 2/,1(b2 - aZ) r
3
L, LA oTb’ (r, -1,)b%a’
rr (b2 _az) (bz _az)rz
andr,, = r,a’-r,b?  (r,-1,)b%a®

b7 -a?) [P -a’)r?
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To obtain the viscoelastic solution, we apply tlwrespondence principle which

states that the quantities;, 75, u,7,,7gg must be replaced by their Laplace

transform and the elastic constants U and K by

Q(s) and KD(S):%%'

We also assume that there is step loading.
Therefore
r,(t)=r,H(t),7,(t)=7,H(t) where H(t) is unit step function.

Taking the Laplace transform, we have
T, =%, T, =2 (8)

Also equation (7) is free from elastic constantserkfore stresses do not change for
the viscoelastic material. Hence, we calculate only
From equation (6) and (8), the Laplace transformisfoelastic solution is

3P'P" ra® - 1,h° P (r-7o)p%% |1
ZQMPI + QIP") (bz _ a2) QIS (bz _ az) r

= U(s) = s(

We now choose the specific material to obtain tldues of P',Q',P",Q". We
consider two cases.

Case I:

We assume that the material is elastic in dilataséind Kelvin behaviour in distortion.

Since material is elastic in dilatation s9= 3KJ
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L.T. gives us,d =3KJ9

On comparing with"(s)g =Q"(s)J , we get
P'(s)=1Q"(s)=3K

Since material is Kelvin behaviour in distortiorr qpe +

I I a
=P()=1, Ql)=a +a

P(s)=1 , Q(s)=q,+qs

Using equations (10) and (11) in equations (9)gete

3 ra® - 1o’ ce 1 (r,-72)0%% |1
do+6K+as)| [p2-a?) | (dwo+as)s| [p?-a?)

u(s)= S

r

The solution is in Laplace transform domain.

. 1 111 1
Taking Inverse Laplace transform and u% ——[———D, we get
si?s+ a) als s+a
2 _ 2 _ 2 2
U(s):ix 3y | na” -robt |l 1 el m (ry-71,)b%a
G1 do +6K (bz—az) s do +6K | g do
il
Taking Inverse L.T., we obtain
q,+6K
2 _ 2 - t _ 2.2
U(t): 3 Z']_la2 Tzzb 1-e & r+i (Z']_ 2T2)b28. 1-
do+6K | [b?-a?) do| [p?-a

is required displacement for Kelvin model.
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Case ll:
We assume that the material is elastic in dilatedind Maxwell viscoelastic
behaviour in distortion.

Since material is elastic in dilatation b7 3K
L.T. gives us,d =3KJ9
On comparing withP"(s)g = Q"(s)J , we get
P9=1, Q=3 13)
Since material is Maxwell behaviour in distortidine stress-strain relation is
T+ Ml =e
Taking L.T., we obtain
(1+ pys)T = ys8(s)
Comparing withP'(s)r = Q'(s)e , we get
P(s)=@+sp),  Qls)=a(s) (14)
We also assume that there is step loading.

Therefore

Tl(t): TlH(t) , Tz(t): TzH(t)

Taking the Laplace transform, we have
7,=-17,=-2 (15)

Using in equation (9)
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1+ ps) {&az - rzbz}r N pls)|:(rl,_ rz)bzazl 1

uis)= =
S (T s B i e o
Taking Inverse L.T., we obtain
1 | na? - r,b? et 1| (ry-1,)0%a? 1
u(t): 18 2Dl W o ogekp, | 17T [t+ I01]—
2K (bz - a2) 0y + 6Kpy h| (p%-a® r

is required solution.
Particular case:

When the outer surface of the tube is free fronermel pressure.

Taker, =0

Problem-II

Consider the thick walled tube subjected to therimdl pressure ang outer surface
is n contact with rigid medium. Like last articlee have

ur:ur(r), u, =0, u,=0 (1)
Boundary conditions are:

r, =-r,whenr=a
andu, =u=0, when r=b

(2)
Therefore equation of equilibrium gives

(A + p)grad divu + £0%u+F =0

(A +2u)grad divu - zcurlcurlu =0

By equation (1), curlcurlu=0
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So, equation of equilibrium gives

grad divu=0

d (du u}
=—|—+—|=0

dridr r
Integrating, we have

(% +Ej =2A (A is constant)
d r

:(r%+uj:2Ar
dr

—ru=Ar’+B

where B is constant of integration.
=S u=Ar +E (3)

r

The stresses, corresponding to equation (3) are

r =2+ waeau{ -2
r
(4)
B
ro =200+ A+ 2u 5
From equations (2), (3) and (4), solving for A, B get
B
2(A+ u)A+2u (——zj =-r
a

and Ab+E:O

We get,
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Ae . — 2 R 1b2a? -
A+ p)a’ +o?|" T 24+ p)a® + o]

Using in equations (3) and (4), the elastic solut®

ra’

2 {_r +T} (5)
(5

-ra’

r, = {K #J’-ﬁj@ (6)
K+ & 417 7 St
3

To obtain the viscoelastic solution, we apply tbeespondence principle.

The Laplace transform of viscoelastic solution is

-2 2
L_J(S) - 7a b

2 {—I’ +T} (7)
ey

_ a2 2
Ty = "';‘ [KD+[%+b—2}uD} ®)
ol

We also assume that there is step loading.

Therefore

rt)=7H(t)

Taking the Laplace transform, we have
= 4
4 (S) = E (9)

MAL-643 101



Qfs) and K%s)= Q"(S).

We assume that the material is elastic in dilatatemd Maxwell viscoelastic
behaviour in distortion. (Similarly we can discuskout elastic in dilatation and
Kelvin viscoelastic behaviour in distortion.)
Since material is elastic in dilatation b7 3K
L.T. gives us,d =3KJ9
On comparing withP"(s)d = Q"(s) J , we get
P'(s)=1, Q"(s)=3K = K"=K
Since material is Maxwell behaviour in distortidine stress-strain relation is
T+pl =qe
Taking L.T., we obtain
L+ p.s)7 = g, se(s)
Comparing withP'(s)7 = Q'(s)e, we get,
P(s)=+sp),  Qls)=as

Using these values in equations (7) and (8), we get

_ 3r(d+9sp,) b? 3b?
uls)=————5|-r+— where a=6Kp, +q,|1+—
) s(6K +as) r S
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_ -ra’ 1 sz 0,S }
n\S)= K+l -+ o5
( ) S(Ka2 +(a2+b2j a.s j{ (3 re 2(1+ pls)

3

Taking Inverse L.T., we obtain

2 6K 2
u(t) :L{l—(H%Jie ”t} {—r +b_}
2K a“ Ja r

o (t)=-r 1—3b2(—2——2jﬂe a
a- r°)a

11 _6K,

_ 2 h,. o

roolt) = 1| 1-3b [_+_j_e a
(t) CARER P

which is required solution.

Problem llI

Outer surface is in contact with rigid medium andar surface is acted on by

pressurery .

Boundary conditions are:

u=0 at external

I, =—Ip atinner boundary.
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5.5 Summary
We have studied about the correspondence prinoipl@ear viscoelasticity and its

applications to two-dimensional problems.

5.6 Keywords: Viscoelasticity, Correspondence principle, thick llec tube,
internal pressure, External pressure, axial symmelastic material.

5.7  Self-assessment Questions

Q 1. State and prove generrespondence principle of viscoelasticity.

Q 2. Describe deformation of long thick walled tube daenternal pressure;, and
external pressure,.
Q 3. Describe deformation of thick walled tube undeernal pressure, and tube is
in contact with a rigid medium.
Q 4. Describe deformation of thick walled tube when owgtgrface is in contact with
rigid medium and inner surface is acted on by press, for the material elastic in
dilatation and Kelvin viscoelastic behaviour intdision.
Q 5. Describe deformation of thick walled tube when ostgface is in contact with
rigid medium and inner surface is acted on by press, for the material elastic in
dilatation and Standard Linear Solid viscoelasébdviour in distortion.
5.8 Suggested Readings

1. Y.C. Fung, Foundations of Solid Mechanics, Prentiadd, New Delhi.

2. W. Flugge, Viscoelasticity, Springer Verlag.
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3. R.M. Christensen, Theory of Viscoelasticity- Anrbduction, 2nd Edition,
1982, Academic Press Inc., New York.
4. D.R. Bland, The Theory of Linear Viscoelasticityer§amon, New York,

1960.
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Chapter-6

Fundamental Equations of Elastodynamics and SeismMyaves
6.1 Objectives
In this chapter, we shall discuss abbigld equations of Elastodynamics, propagation
of waves in an isotropic elastic solid medium, wsawé dilatation and distortion. We
also discuss about elastic and plane elastic waves.
6.2  Introduction
The differential equations of motion of an elasiatid can be obtained at once from
the equations of equilibriunf, ; +F =0, (i,] = 1,2,3) ] by invoking the principle
of D’ Alembert and adding the forces of inertiath® components of the body force.
If (X, X,,X%;) is the density of the medium, then the componehtthe force of

2

N . . i 0°u,
inertia acting on the mass contained within theira elementr are — p atzl dr.

Hence adding to the componerfis of the body forcé= in equilibrium equations, the

components of the force of inertia per unit volugnees the system of equations

I, tF=p0
2
where %tl:i =0 |,

which are known as equations of motion.
6.3 Field equations of Elastodynamics

We know that
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|  Equations of Motion:

i + of, = o,
where
T. isstresgensor

? (Tji)

r..=——
Iy
axj

f, areBodyforceper unit mass
2

o°u, . .
U, = atzl is Acceleratbn

pU, is known Inertia term

Il Constitutive equations (Generalised Hook’s Law):

For isotropic homogenous elastic medium, the stsassn relations are given by
Tij = AJ9G;j + 21,

where A, u are Lame’s Constants

J =gy =1+ +e33 is known as Dilatation or Cubical dilatation.

g, Is StrainTensor

r;, is StressTensor

[ll Strain-displacement relations:
1

8j 2( i J.l)

IV Boundary conditions

Either displacements or tractions (stresses) ascpbed on boundary, i.e.,

U =@ or tj =¢; are known.
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In case of mixed BVP, the displacements are giveaame portion and stresses are

given on remaining portion, i.e.

Boundary
On boundary
S=§,+Sr
6.4 Waves
Wave is a disturbance travelling through a mediuithhaut producing a permanent
displacement to the medium such that the energyapagated to distinct points.
Waves in air, in liquid, in the light, in the stgnin the electric cable are very
common. Examples are: (i) when a pebble is droppeda pond, water waves travel
radially outwards; (ii) when a piano is played, thi&es vibrate and sound waves
spread through the room. Also the conversation \&kens carried by sound waves;
(i) the objects we see are made visible by lightes.
Definition: A wave may be defined as a disturbance that prapsgeth a constant

velocity without change of shape.
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6.5 Field equations of Elastic waves

Equations of motion are:

Tii,j + A = Ay

Stress-strain relations are

rji =493 + i j + ;i)
wherel , 1 are elastic constants.
Then, using (2) in (1), we get
Ao 5 + /J(Ui,n U )+ = g

= Ad; +,U(D2Ui +79,i)+,0fi = i

= (A+p)9; + 0P, + pf; = pti

(1)

()

These are known as Navier’'s equations of motioeséhare the 3 scalar equations.

These are the displacement equations of motion.

Navier's equations of motion in Vector form:-

If u; are the displacement components, then

= u§
where & are the unit vectors.

So we have
(A +m)Bd; +180%; + o8 T = B

= (A+p)grad 9+ L0020+ ff = i

MAL-643

3)

109



These are the Navier’s equation of motion in vefdon.
Sinced =divi, then
(A +p)graddivi+pd2i+pf = pd
Also
0% = grad divd —curl curl G
Then above equation becomes
(A +2u) grad div G- pceurlcurl G+ p f = p
or
(A+2u)000-pOxOxb+p f = pl
These are the system of coupled partial differeetjaations for displacement vector.

6.6 Waves in an isotropic elastic solid medium:

In the absence of body force, the equations ofond{3) become

(A + p)gradd + p0%a = pi (4)
Taking divergence of both sides, we obtain

2
(A + p)divgrads + ,udiv(DZG)= g—z(divu)
t

2
= (A + )0%9 + p0?(diva) = ps—z(diva)
t

0%9
ot?

= (A +p)0%9+ 0?9 =p
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= (A +2u)0%9 = pd

2
:>(/1+2y)mzz9:paf
ot
2
—0%9=|_P 6129
A+2u) ot
re . 1 0%9
where
aZ:)HZ’U
Yo,
Since
K=a+2H
3
4
K+—-u
:>a2:)'+pZ”: 3 ©)

From (5), divi =4 satisfies 3D (scalar) wave equation with veloaity
Next, take curl of both sides of equation (4), vistam
(A + u)curl grad? + pourl (Dzﬂ)z ocurl U

2
— u0?(curl G) = a—z(curl )
ot
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Let us define

Q= curld=0x0

= 0%0
= u0%Q =
HO P50
2 _Bazfz
U ot?
2a
:Dzéz%a—? , (7)
B2 ot
where[n’zzﬁ
0

Equation (7) is a vector wave equation with velpfit
Equation (5) shows that dilatational disturbaicenay be transmitted through an
elastic medium with velocitg. And equation (7) shows that a rotational distodea
may be transmitted through an elastic medium wéloaity 3.
We therefore, conclude that the disturbance inrdimiie homogeneous isotropic,
elastic medium can be propagated in the form oftiypes of waves:

1. Dilatational waves with velocity of propagatian

2. Rotational waves with velocity of propagatipn

If A= u(Poisson’s case)

. B =

Then a?=

NS
NSRS

Sa=38 = a>p
Therefore Dilatation waves moves faster than rotali waves.
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Therefore, dilatational waves arrive first whilgational waves arrive after that on a
seismogram. For this reason, dilatational wavesa#se called primary waves and
rotational waves are called secondary waves.

6.7  Seismic wave potentials:

The displacemeni is also expressed in terms of P-wave scalar patefitand S-
wave vector potentiap , using the Helmholtz’'s decomposition theorem,
a=0¢+curlg, divg =0

in equation of motion, we can get

2
quz): %0_(0 for P-wave
a“ ot
2, _ 1 0%
Dl/7=?a—2 for S-wave.
t

Dilatational waves are also called irrotational esor P-waves.

Since div ¢ = 0, it follows that a rotational wave is free of exgion or
compression of volume. For this reason, the ratatiowave is also called
equivoluminal or dilatationlessr secondary waves or S-wave.

Remark 1: The dilatational wave$(# 0) causes a change in volume of the material
elements in the body. Rotational wave (whgr¢ ) pBoduces a change in shape of
the material element without changes in the volofmaterial elements.

Remark 2: Rotational waves are also referred as shear wavesvave of distortion.
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6.8 Plane Waves

A geometric surface of all points in space overchilthe phase of a wave is constant
is called a wavefronts. Wavefronts can have mampea$. For example, wavefronts
can be planes or spheres or cylinders. A line nbtontne wave fronts, indicating the
direction of motion of wave, is called a ray. letlwaves are propagated in a single
direction, the waves are called plane waves, aadmivefronts for plane waves are
parallel planes with normal along the directionpobpagation of the wave. Thus, a
plane wave is a solution of the wave equation ictvithe disturbance/displacement
varies only in the direction of wave propagatiom a constant in all the directions
orthogonal to propagation direction. The rays ftanp waves are parallel straight
lines.

6.9  Propagation of Plane elastic waves:

In the absence of body forces, vector equationatfan is

(1 + 24)0(00) - pOx (0 x) = pli)

:Mm(m.a)—ﬁ Ox (Oxd) =i
P p

a?0(04)- g20x(0xa)=d (1)
A solution of the equations of motion represenpiene waves propagating in the

direction

p=1;§ with velocity c, is of the form
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and

= eitherc=a and px(pxd")=0
=c=a and (pxU") is arbitrary.
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—

= p and U are parallel.
and
c=4, (p.0)=0

= P and U are perpendicular (S-waves).

Therefore, for P-waves, the displacement vecioris parallel to the direction of

propagationp, i.e., P-waves are longitudinal waves.

Similarly for S-waves, the displacement vecibris perpendicular to the direction of
propagationp, i.e., S-waves are transverse waves.
6.10 P, SV and SH waves of Seismology:

Let vertical plane through the direction of prop@mais x;x3-plane.
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Q’i v
'x3

The displacement vector for S-waves can be decoaiposo two components, one in

the x;x3-plane known as SV-components and the other inhthreontal direction

known as SV-components.

Here SV is vertically polarised components and SH hiorizontal polarised

components.

For P-waves, displacement is in the direction oppgation.

For SV-waves, displacement is perpendicular todinection of propagation but in

the vertical plane.

For SH-waves, displacement is in a horizontal dioecperpendicular to the direction
of propagation.

6.11 Wave propagation in 2-dimensions:

In 2-D motion, the motion is same in all planesafial to a given plane. Let us take

this plane as xz-plane.
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Theni =0
0

y

The equations of motion are

(A + u)9; + 0%y, = ol 1)

Let u; = (u,v, W)

Forizl,(A+y)?3—l9+yD2u:p(j 2)
X
. 09 2 o
For|—2,(/1+,u)a—+,uD v=pV = 0% =pv (3)
y
Fori:3,(/1+/,1)%—19+u|]2w=,0\7\'/ (4)
z
where
79:%+6_\N (5)
ox 0z
and
2 a2
D250_+a_
x> 92°

Therefore, for 2-D motion parallel to xz-plane, atjon of motion are (2), (3), (4).

v- Motion is known as Anti-plane motion or out dape motion and (u, w)-motion is
known as in plane motion.

6.12 Half-space Model or Semi-Infinite medium:

Boundary of medium is stress free,5g,7,,,7,, vanish.
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X
zZ
From the stress-strain relatiorry, = 199, +2ue; , we have
=i eS| ©
TZZ:/}%+()I+2,L1)%—VZV (8)

(P, SV) motion is independent of SH- motion, i(a,,w) motion is independent of v-

motion.

Waves
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6.13 Displacement potentials:
By Helmholtz's Theorem,
d=0O¢+curl ¢ , divg=0 (2)

The equations of motion in the absence of bodye®are

A+ p)grad divii + 4040 = g
(A +u)

or
(A +2u)grad diva — geurl curl G = pi 2)
a?0(0a)- p2ox(0xa) =i 3)

a2 =A%2H g2 _H
Yo,

From (1) & (3), we get

2 2
aZD(D.(qu+ curIzﬁ))—,BZD x(0x(De+ curl @)) =[grad 0 2+ curl 9 lﬁ}

ot? ot?
Since
diveurl =0,
curl gradg=0
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and
div(gradg) = 0.0¢=0%p

We have

2 2
a” grad D*g- 8 curl (- 0% + grad divyy ) = (grad o e %twj
2
:grad( ¢—g¢]+curl {/me—_ﬂ:

This equation is identically satisfied ¢f and ¢ satisfy the equations

1 92
qupz _2_
ot
(4)
2 LM
B? at?

Let (u, v, w) are components of displacements, then

From (1),
(u,v,w) = =DOgp+curl @ [ = (wr.w2.03)]

_0¢ 043 0y

ox oy 0z
9p 0y _0¢s3
oy 0z 0Xx

w=99,0¢2 _oyn

Jz 0X ay

=>u

V=

For (P-SV) motion,

:a_qﬂ_awz, V_O, :a_§0+aw2
oxX 0z 0z OXx
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204,09 o, w=22_9% 5)
ox 0z 0z Ox
From (4)
Dz :i@
a? ot?
1 0% (6)
and Dzzﬂ:?atz

Therefore,¢ represents P-waves apdepresents SV-waves,
The scalar potentialg andy are known as displacement potentials.
The stresses are given by
_— (au awj
0z 0X

=71, =l - +

ox0z o0x*> 0Z°
and

ow 0’p 0%
L=a9+2u 2 = 02+ 2
Hog =77 ”(a ? axaz]

A > 0°p 0y
= O°p+2
'u{,u ot (az axazﬂ
but

2
A:A+2’u—2:(a_—2j
U U

Therefore
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g oy
0z> 0x0z

2 2 2 2 2
:ﬂﬂ%_zjuua_a_w_za w}

and T, =0

For SH-motion or V-motion:-

u=0, w=0
2
B° ot
_ ow  ov ov
T, = —+t— | = u—
dy 0z 0z
I, =7,=

Note: Solution of one-dimensional wave equation:-

@=a cos[mx—at +¢]

= @= Realpart of [Aei(““"‘x)J , WhereA=ae™, a=|A; £=argA

= p=|Agl™)|

i.e., ¢ satisfies one-dimensional wave equation, where ¢constant, w = frequency

and t = time.

6.14 Summary

We have studied aboptopagation of waves in an isotropic elastic soliedium and
waves of dilatation and distortion. We also studambut elastic and plane elastic

waves.
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6.15 Keywords: Elastic wave, Plane wave, Wave propagatidaaves, SH-wave,
SV-wave
6.16 Self-assessment Questions
Q 1. What are plane waves? Derive the equation ofepleaves.
Q 2 Define elastic waves and show that two typesladtie waves propagate in an
infinite homogenous isotropic elastic medium.
Q 3. Describe wave motion in two dimension, in termslisplacement potential.
Q 4. Show that two types of waves can propagate iurdmunded homogenous
isotropic elastic medium. Justify the nomenclatused to describe these waves.
6.17 Suggested Readings
1. 1.S. Sokolnikoff, Mathematical Theory of Elasticitrata McGraw Hill
Publishing Company Ltd., New Delhi.
2. Y.C. Fung, Foundations of Solid Mechanics, Prentled, New Delhi.
3. S. Timoshenko and N. Goodier, Theory of ElastictcGraw Hill, New
York.
4. Martin H. Sadd., Elasticity Theory, ApplicationstaNumerics AP (Elsevier).
5. ALE.H. Love, A Treatise on the Mathematical TheofyElasticity, A" Ed,,

Dover Publications, New York.
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Chapter 7
Surface waves
7.1  Objectives
In this chapter, we shall discuss absutface waves, types of surface waves, Elastic
surface waves such as Rayleigh and Love waves.
7.2  Introduction
In an elastic body, it is possible to have anottype of waves (other than body
waves) which are propagated over the surface andtqae only a little into the
interior of the body. Such waves are similar to @saproduced on a smooth surface of
water when a stone is thrown into it. These typgeswaves are called surface waves.
Surface waves are “tied” to the surface and dirhieisponentially as they get farther
from the surface.
The criterion for surface waves is that the amgitwf the displacement in the
medium dies exponentially with the increasing dista from the surface. In
seismology, the interfaces are, in the ideal caseizontal and so the plane of
incidence is vertical. Activity of surface wavesrestricted to the neighbourhood of
the interface(s) or surface of the medium. Undetage conditions, such waves can
propagate independently along the surface andfacter For surface waves, the
disturbance is confined to a depth equal to a fawelengths.
Let us take xz — plane as the plane of incidendk wi- axis vertically downwards.

Let z = 0 be the surface of a semi-infinite elastedium (Figure).
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Z
For a surface wave, its amplitude will be a functaf z (rather than an exponential

function) which tends to zero as-zo. For such surface waves, the motion will be

two — dimensionalparallel to xz — plane, so thg{ =0.
y

7.3  Types of Surface waves
As the amplitude (disturbance) of Surface wavesgsificant only near the boundary
and it decreases rapidly as we move away from ¢dhmdary. There are two types of
surface waves:-
1. Surface waves of (P, SV) type are known as Rayleigves named after the
scientist Rayleigh.
2. Surface waves of SH-type are known as LOVE wavesedaafter AEH,
Love.
7.4  Rayleigh waves
Rayleigh (1885) discussed the existence of a ssherface wave propagating on

the free — surface of a homogeneous isotropicielaatf — space.
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We consider 2-D wave propagation in a homogenasosppic and elastic half-space

occupying the regionz 0.

O —— ¢ (velocity)

Then we have, displacement components are

u=%+a_¢l,vzol W:%—a_w

ox 0z 0z Ox

Also ¢ and y satisfies the wave equations

For Rayleigh wave propagating in the positive xediion, we assume solution is of

the form:
dx z,t)= 1 (2) ol
or

#x,z,t) = f(z) &@*)
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For negative x-direction, we have solution is a form:

d(x,zt)=f (z)ei “{sz

where c is the velocity of propagation of Raylevgives andk = % is wave number
c

ando is angular frequency.

Put the above in the following wave equation,

dz? a?
2 2
= d I —(kz —% f=0
dz a
d?f W’
-k?|l1- f=0
- dz’ ( azkzj
2
- 4 I—kza2 =0
dz
where
2
a’=1- acjl; or a’ :1—%
= f(z) ="
Therefore

MAL-643 128



(D(X, Z,t) = ei(“‘kx)eikaz
Similarly (replacingx by B),
[/J(X, Z,t) = ei (a’t_kx)ei kbz

C2

where b2 =1-—

’82

To satisfy B.C., we neglect the positive sign.

T ZZ
l ellipse

—c°c O
X

Therefore, for Rayleigh waves propagating alongditnendary of the half-spacezz

0, we may assume

0= Aei(ax—kx)e—akz (1)
W= Be (ax—kx)e—bkz 2)
where
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¢ b= 1—C_

a=[1-=
a? B

a, b are real and A & B are arbitrary constants.
Asaisreal, > c<a

and adisreal, >c<pg

B.C., we assume that the surface of the half-sfzabe traction free, i.e., free

boundary
=Tz =T, =0 at z=0.

(herer, =0, 7, is identically zero)

o |2 0%y 0%y
= X0z  gx°> 972

and
2 2 2 32 2
a 0 0 0

R T e v ®)
B ox* p°oz°  0xoz

Ist B.C.,7, = Oatz=0 (4)

2 2 2
= 20 ¢—aw+aw =0 atz=0.
0X0Z 9x? 972

Using values ofg and ¢ from (1) and (2), we get

2iaA+B¢c=0 (5)
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where

2
c=Lrb =225 (©)

From (3),7, =0 atz=0, gives

a®_,|0%, a2 % 0% |_
B x> B2 a2 oxoz

= ¢A-2ibB=0 (7)
Equation (5)= ¢ =_2%A
2ibB

Equation (7)= ¢ = A

Multiply these two equations, we get

c2=4ab
2
2 2 2
or 2—"—2 =4\/1—°—2 1—“’—2
B a B
2\* 2 2
On squaring(Z—%j :16(1—%j (1—%) (8)

Equation (8) gives velocity of propagation of Raglewaves, sincer, 5 are known,

and so velocity for Rayleigh waves ‘c’ can be chdted.
This equation is known as Rayleigh wave equation.akon (8) gives velocity of

propagation of Rayleigh waves along the surface ludilf-space.

MAL-643 131



We note that Equation (8) is independent of w,vedocity ¢ does not depend upon
angular frequency w. Therefore, Rayleigh waves mndorm half-space are Non-
dispersive.

Solving (8) for ¢, we get
2 2
s® -8s° +(24 16'8 Js 16(1 'Bj ) (9)
a

2

where s =—.

This is a cubic in s gives three solutions, eitdereal or one real and two complex.

a a’

Letf(s):ss—852+(24—16ﬂ—2]s—16(1—'8—2j:0 . (0<s<l)

f(0) :—16(1—§—zj<0 and f()=1>0

Therefore

f(s) = 0 has either one or three roots satisfying the ¢mdd < s<1.
f"(s)=6s-16=0 if s=—

If the equationf (s) = 0 has three roots in (0, 1), theff(s) = nfust have one root in
(0, 1).

Since f"(s) = Ohas no root in (0, 1). Therefore equatib(s) =0 has one and only
one root in (0, 1).

In case of Poissonian earth,
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U:% =025 (sinced=yu)

Put these values in equation (9), we get
s =4, 3.15,0.85 (20)
. . c? Cc
Only one root in (0, 1), i.e.,, s =0.85 Sl‘—'? = 0.85:>E =092 (11)
Therefore, in the Poisson’s case, the velocity mippgation of Rayleigh waves is

approximately equal to 0.92 times the velocity afgagation of S-waves.

We know that

_O0p oy _ . —akz _ § _-bkz | Li(wt-kx) .
u=—+-—=-ikAje™ -Ze e
x| oz ( 5 ) (using (6)) (12)
W= 99 0% _ KA (— ae +§e‘b'“} e (ysing (5)) (13)
0z 0X ¢

At the surface z = 0, we get

u, = —ikA(l—%j e’ whered = (wt — kx)
W, :akA(—1+gj e’ whereé = (wt — kx)
¢
CZ
2 2
Now(l—sj: C2 and —1+Z = 2'82
2) 2B ¢ _cC
2p°
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Therefore,

u, = -ikAU (0) €° , w, =kAW(0) € (14)
CZ
2 a 2
whereU (0) = 2(:32 , W() = _2'52 >0 (-c<p) (15)
2p°

Also we find thatU (0) <W (0)
Taking the real part, (14) gives

u, = kAU (0)sinéd = b, sing,
(16)
w, = kAW (0) cosd = a, cosd

where
b =kAU (0) , & =KAW(0) >b, (-w(©)>U(0)

From (16),

which is equation of an ellipse witay and b; as semi-major and semi-minor axes.

Therefore, surface particles describe ellipses. Heaeticle motion is elliptic
retrograde (opposite to that of wave propagation).

7.5 Surface waves of SH-type or Love waves in a half-ape model:

We consider first the possibility of the propagatimf SH type surface waves (called
Love waves) in a homogeneous semi-infinite isotragastic medium occupying the

half-space 2z 0. The horizontal boundary z = 0 of the mediumssuaned to be
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stress free. Leto be the density of the medium antd 4 Lame’s constants (as

shown in figure).

0 z=1)
X
z>20
Au,p,p

Elastic isotropic half-space
Let the two — dimensional SH-wave motion takes @lat the xz-plane. The basic
equations for SH- wave motion are

u=0,w=0, v=vVv(Xzt) (1)

0°v 9% _ 1 d%v

Z iy == 2
ox> 9z pB*ot? @

ﬂZ - (3)

o Ix

Let v(x,z,t) = g(z) €/t

Then we get
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where

b2 :1_F

Therefore

v=v(x,zt) = ezel)

For possibility of existence of Love waves in affsglace model, we take
v=v(x,zt)=e g™ - c<cp

B.C,r,=0at z=0

:>/JQ=O at z=0
0z

= LA (-kb) €™ =0= A=0
—> Surface waves of SH-type or Love waves do not exiathalf-space model.

7.6 Propagation of Love Waves
These waves are named after AEH, Love (Surface wh8eél-type).
Surface waves of the SH-type are observed to ocnuthe earth’s surface. Love

(1911) showed that if the earth is modeled as atrapic elastic layer of finite
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thickness lying over a homogeneous elastic isatrdpalf- space (rather than
considering earth as a purely uniform half-spabentSH type waves occur in the
stress-free surface of a layered half-space.

Let us consider a model consisting of a layer afoum thickness H overlying a

uniform half-space.

0 z=0
7y > X
0<z<H
vwu,p |H
B=dd
Y s B z2H
2

We assume that the layer and the half-space avelded contact (displacement and

stresses at this interface are continuous)

For layer(0< z< H)

; c<p (1)
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C2
whereb = 1—? ., w=ck

c is velocity of propagation of Love waves and
S is velocity of propagation of SH-waves in unifolayer of thickness H.

For half-space (z > H)

62V1+62V1: 1 02v1
ox? 0z ,812 ot?

Let v, = A 0zelwk) c<p (2)

2
whereb, = 1—% , c<p

1
B, - Velocity of propagation of SH-waves in half-space

B.C. (i) the surface z = O is traction free, iB,, =0 atz=0

[ r, &1, are identically zerd

:uﬂzo atz=0
0z
Using v from (1) atz=0
4| A= bk)e™ + Bbke™ |e“) = g

= u[- Abk +Bbk] €“™™ =0 at z=0

= —Abk +Bbk =0

— A=B )
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(i) the displacement is continuous across theafate z = H,

e, v=yatz=H

— AePKH 4 gebkH — A&e—kblH

(iii) the traction is continuous across the intega = H,
€., Ty = (rzy)l at z=H

Here using for layer: 7, and for half-space: (rzy)l

ov 6V1
S U—=h—— atz=H
'Uaz A 0z

= 11|~ bAke™" + kbBe™ | = kiz, A (- b, Je "

— Ae—ka _ Beka = /'Ilbl IA&e_blkH

b

(4)

(5)

Solving (3), (4), (5) for three unknowns, put B 3rA(4) and (5) from (3), we get

A(e—ka + @bk ) — Aie—blkH
and

A(e—ka _ ghH ): Hib, AeH
Mo

On dividing, we get

tanh(okH ) = - A2

11
2
2 1_%
= tanh| kH 1—C—2 =—ﬂ—'81
B H c2
'z
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We assume that ¢35 and consider following cases:
(i) Ifc<Pi, c<P
If c <B, then L.H.S. of (6) is real & positive and R.HiSreal & negative.

Therefore, equation (6) has no real roots in ¢, ¢.eannot be less th@n

(i) If c <B1, c >P

2 2
if ¢ > p, \/1—;5\/;—1

eguation (6) becomes

tanh | kHi C_zz_l :p&@
| Ny

=i tan{kH \/;—T—l} :iﬂ@

M \c?/B% -1

= tan kH i—l :ﬂ—“l_cz/ﬁlz (7)
B? Ho\c?/p? -1

This equation is known as Frequency equation orogeequation or dispersion

equation for Love waves in a layer of uniform thieks overlying a uniform half-
space. Roots of this equation in ¢ gives velodtgropagation.

Soherec$1 ,c>p

= B<c<fp
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We note that for existence of Love waves, it isassary that S-wave velocity in layer
is less that the S-wave velocity in half-space sTdives the upper and lower bounds
for the speed of Love waves.

From equation (7), we note that the velocity ¢ aejseon k ord or o (angular

frequency), therefore, there is dispersion, i.eyd.waves are dispersive.

7.6 Summary

We have studied abostrface waves, types of surface waves, Elasti@sernivaves
such as Rayleigh and Love waves. The existenceitcmménd nature of Rayleigh
waves and Love waves have also been discussed.

7.7 Keywords: Surface waves, Rayleigh waves, Love waves.

7.8  Self-assessment Questions

Q 1. What areSurface waves? Derive the dispersion equation Gwelwaves in a
layer of uniform thickness overlying a uniform hafface. Find the condition for the
existence of real roots of this equation.

Q 2. Derive the equation giving the velocity of propagatof Love waves in a
homogenous isotropic elastic layer over a homogeimsmiropic half-space.

Q 3. Describe Surface waves. Explain the Rayleigh wave propagatio a
homogenous elastic isotropic half-space, givingevaguation, and wave velocity and
particle motion.

Q 4. Define P, SV and SH waves; Surface waves anceplaves.
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Chapter-8

Torsion of Bars
8.1  Objectives
In this chapter, we shall discuss about torsioeydihdrical bars, Torsional rigidity,
Torsion and stress functions, Lines of shearingsstr We will also study about
simple problems related to circle, ellipse and kedeiial triangle.
8.2  Introduction
Let us consider an elastic right circular beamewigthl. We choose the z-axis along

the axis of the beam so that its ends lie in tlamed z = 0 and z l=respectively. The
end z = 0 is fixed in the xy-plane and a coupleeiftor momentM =M €, about the

z-axis is applied at the end 4 =The lateral surface of the circular beam is stfese

and body forces are neglected.

) A
7

] \
/ d \

z=0
The problem is to compute the displacements, straid stresses developed in the
beam because of the twist (or torsion) it expemesrdue to the applied couple.
(1) Equilibrium equations.

(2) Stress-strain (displacement) relation
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(3) Boundary conditions
T.” =1,v, =0 on lateral surface (No external load or forcesoackateral surface)

On lateral surfacey 3= v ,=0

So boundary conditions are

TV tT4V, =0

T, Wy *tr,V, =0

TV, t1,V, =0

On lateral surface, these are satisfied.

(4) Compatibility equations

8.3  Torsion of cylindrical bars

Let us consider the torsion of non-circular cylirede

Taking z-axis along the length of bar (beam) and end of bar is fixed in the plane
z = 0 (xy-plane) while other end in the plane 4 = is twisted by a couple of
magnitude M, whose moment is directed along the akihe bar (i.e. z-axis). Thus,
we assume that the displacement components are

us-azy , v =ax , W=ag¢Xxy) 1)
where ¢ & y Js some function of x & y and is the twist per unit length of bar.

The function ¢ K y )nust be determined as to satisfy the equilibriurnagiqns,

boundary equations and compatibility equations.
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I; =Au,,9; +,U(Ui,j +uj,i)

Jz 0 oy @)
ol B)e( 2
X 0z 0X oX
IT.. =T. =7 = =

If these stresses are used in equations of equilibin the absence of body forces,

d 0 0 :
Tyt Tyt — Ty =0 |
ax oy Woaz 0

0 0 0

X Ty oy ay v 0z fyz =0 W
d 0 0
&rzx+a—yryz+arzz=0 (iii)

We find that equations (i) & (ii) are satisfied afiig gives

ir +ir =0
ox = oy ”*

=l gpoee)

2 2
a_¢+/jaa_¢:o

= ua
H x> oy’

So equations of equilibrium are satisfied if

62§0 2

[1)4

‘m
AS
]
o

3)

(o3}
N

y
ie., qi(x, y) satisfies 2-D Laplace equation
i.e., ¢ is harmonic function (Torsion function).
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Boundary conditions are:
On lateral surface,

TV, TV, =0
TV, +r,v, =0

TV, tr,v, =0

1'and 2°B.C. are satisfied while®B.C. gives

(—y+a—¢jvx + x+a—¢ v, =0
0x ay

or
o @
SV +—"V = yV, —XV
ax X ay y y X y
d
= d—ﬁ =YV, =XV, 4)

which is independent of z and equation (3) is aisependent of z. So it becomes 2-

D problem.

=<

So

dp=yv, —xv, onC
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S

(3}
N

AN

62
[1)4

+
1
o

in R

N
D
N

y
Therefore, the problem of torsion of a beam (or b&grbitrary cross-section R
bounded by C can be solved in terms of a func{da()n y) such that

2

2
6_2¢+6_20:O in R
ox= oy
and dg=yv, —=xv, on C.

This problem is called Neumann’s problem.

If Fis resultant force andM is resultant couple acting on base iz we have

) 3o

62¢ 2
(By adding x (—2+—j in the integrand)

(e3]

ox y?

Apply Green’s theorem,

_(3Q P
i(de +Qdy) = IJ(& _6_yj dxdy,

We get
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o 0
F, = ua [—x(—+x]dx+ x(——
J; oy 0

o

X
o dx o jdy
=pa || = X| X |—+X|——-y|=|ds
H i[ (Gy st (ax Y [ ds

Direction cosines of tangent af®’, y')

Direction cosines of normal afg’, - x')

Therefore
ds Y ds

Then using these, we get

Similarly F, =0

F,=[[r,dxdy=0
R

—> Resultant force is zero.

M, = J'FE[(yrZZ - 77, )dxdy =

0

=My = —z(O)

Similarly,

My =0
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H - yr7,, dxdy

H(x +y? +x— y%ojdxdy

Hence
dp 0@
M = ua ||| X* +y? +x— - y— |dxd
1 [J[ v rxg yaxj y
— M =Da )
dp 0@
whereD = X2 +y? + x——y—~ | dxd
”Lf{ Vo yaxj y

and D is known as torsional rigidity of beam. dppgnds upon p (rigidity) & shape of
cross-section (region).

From (5), we have

MUOa

—> The twisting moment M is proportional to the anglef twist per unit length.

8.4  Stress function

Because torsion function is harmonic in R, we aamstruct an analytic function

(¢ +i),wherew(x, y)is a conjugate harmonic function gfx, y).

92
ie. f+a¢ in R (6)
ox ay
By C-R equations,

9¢ 0y  0¢_-0y

, (7)
ox oy dy  OX
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%: a_¢vx+%|/ = a_l//VX —a_wv
dv  ox ay ¥ oy ox 7
wdy, oy dx
dy ds 0x ds

dg _dy
dv ds ®)

Equation (4) becomes

dy

——=yv, —XV on C

ds YV Y
dy dy dx_d|1l7/,
—zy——+Xx—=—/|=(x"+

- ds yds ds ds[z( y)}

On integrating, we get
=1( + y?)+ constant C 9
w—zx y“ )+ constan on (9)

Therefore, the torsion problem of a bar of arbjtrenoss-section can be solved in

terms of a functiony(x, y) s.t.

andy = %(x2 + y2)+ constant on C

Such type of problem is called Dirichlet’s problem.

We introduce another functiapr (Introduced by Prandtl, L)

7 =y(x y)—%( 2+y2) (10)
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2 2
- 7 :a—l727+a—w:D2¢/—2 in R
ox

6y2
But 0% =0 in R
Then0%p = -2 in R (11)
= ¢ = constar on C

Equation (11) is Poisson’s equation.

Now
0@ 0 oy

T\~ = UQ| X+— | = Uq| X——— | =—Uuqg ——

e = H ( ay) g ( axj Ao

Ty =ua(—y+a—(pj=ﬂa _y+a_w =/Jaa—w [using (10)]
0x oy oy

As the stress componentg, & 7y, are obtained from the functign(x,y), the
function i (x, y) is called stress function.
If T is stress vector, thef = frzx + frzy is directed along the tangent to curve. Here

normal stress is zero.

The curve = constant are called lines of shearing stress.

2 2
If Tis tangential stress ard= ‘f‘ = (T ) + (rzy)2 = /Ja\/ [aa—(fj + (‘2—‘3)

and maximum shearing stress occurs on the bouri@lafythe cross-section. To prove

it, we shall use the following result:
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1. Let a function®(x;, Xy, X3) is s.t.

(i) Itis continuous and has continuous partial dereatw.r.t. x;, Xo, x3of first and
2" order.

(i) 1t is not identically equal to a constant.

(iii) It satisfies the inequalitﬁztb >0in R.

Then the functior® attains its maximum value on the boundary C ofrdggon R.

Here 72 = /,1202#)(2 +zﬁy2]
% 12 = 2420 G + Uy

62
ST U AT O+
2

a—yzrz = Zuzaz[lﬁyzy t Oy 0Py '”in]

Then0°r* =207 a*|p2 + 0,0, + 0, )+ 0,0, + 0, )+ @2y + 207
From equation (11), we have

0% =Py + Wy = -2 in R

Differentiate w. r. t. X,

(w_xxx ""/—/xyy):O

(‘Wyxxﬂﬁyyy)zo "R

Then we get
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0 = 2’ 4+ 20

= 0°7%=0

—> max. shearing stress occurs on the boundary €gidm R.
8.5  Torsion rigidity in terms of ¢ :-

Torsion rigidity is given by

M =Da
or

D=—M

1
a

[Here M = MZ]

%J- (xr - yrzx)dxdy

R

( —+ y—j dxdy
R

-y j{&(xwwa—y(yw)}dxdwzugcmxdy

R

—

-

Using Green’s theorem,

jj(gf apjdxdy dex+Qdy)

We get
D= —/Jj(— ydx + x{pidy) + 2,u”177dxdy
C R
= ~u[@ (- ydx+ xdy) + 24 [[@ dxdy
C R
We can takey =0 on C.
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Therefore

D= 2,u”(77 dx dy

So, the torsional rigidity D is twice the produétsbear modulus p & the volume
enclosed by the surface=(x, y) and the plane z = 0.

8.6  Torsion of elliptic cylinder

Problem of torsion of a cylinder of any cross-s&titan be solved if we can find a

function ¢ such that

O Ty oo L¥L9Y in R (1)
X~ oy

and

M wley)=2b@+y?) e @

Let ¢ be conjugate harmonic functiongf such that
p+ig =ic?(x+iy)? +ik?,
where ¢ and k are constants.

This is the form of analytic function derived byii@avenant.
p+iy = icz(x2 - y2 + 2ixy)+ik2
= p=-2c’xy (3)

w:cz(xz—y2)+ K2 @)
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2
6_1//:2sz oY = 2¢?
0X ox?
2
W _ gy, U _ o
oy oy
2 2
Therefore 9 ‘/2/ + 9 ‘/2/ =2c?-2c¢% =
ox“ oy
From (2) & (4),
cz(xz—y2)+ k? =%(x2+y2) onC
— (l_czsz +(£+C2jy2 = k2
2 2
2 2
X + y =1 onC

) el

Let cross-section of cylinder (bar) be ellipticetth

2 2
X_+y_:1
a’ b2
where
2 K?
a =7
2
2
and b2 = K
1, 0
2

MAL-643 155

(5)

(6)

(7)

(8)



Yy
N[

For an ellipse, both andb are positive. Then from (7), we have

2 1 a -p? 2 a’p?
=C" =7 5 ke = 5> (9)
2( a%+b ac+b

Then (3) and (4) give

a’ -b?
a’+b?

1( a® -b? a’b?
wZE(az+b2](X2_y2)+ a® +b? )

Q== Xy (10)
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=uax |1- (a2 _bz) = 2b2
H 2ip | M
. 210b%x (12)
yz a2+b2
T.. = Ua +—¢ =pa| —-y- b
« i Yy M y a2+b2 y
2_b2) 2a?
,UO'( Y){ 2 4 p2 } H ( )a2+b2
g —2uaa”y (13)
Xz az+b2

I (Xsz - yTD()dXdy

R

Torsional momenM =M, =

So M=M,
2 2
v o
2
= azl:ll-c[?;Z vg(bzxz +a2y2) dXdy
-2 v oo o)

Now
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Hx2 dxdy = I aj x* dydx
R 2 hfene

1
D
—_—
—
x
N
Q.
<
Qo
X

1
D
O —y
X
N
|
QD
N
|
X
N
o
X

Put x = asind = dx = acosd dd

Therefore

47
”xzdxdy =— Iaz sin® fa cosfa cosd dé
R a 0

7
= 4ba® jsin2 fcos 6 do
0

2 13

%ﬁlﬁ
a2 \2)2\2
=2a’b o

3
=%a3bn: 7a’h

yrab®

Similarly ” y?dxdy =
R

Using these, we get
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3 3
M. = 2ua bzmb+a2mb
a’ +b? 4 4

2ua as a3\ 4uama’o®
= b b )=
4a? +b? iﬂ(a *a ) 4a? +b?)
_ pama’n’

= M= )

Torsional momenM =M zzj"[(xryz - yrzx) dx dy
R

Therefore
_ 2uab® ¢, 2uaa® ¢ o
M = 2+ b7 ij dxdy+a2 TP gy dxdy

2ab? N 2u0a°
a2 +b2 y a2 +b2 X

= aZZﬁCE)Z [a2| X +b2| Y]

wherel, and I, are M.I. of elliptic section about x and y-axesspectively.

We know that

| = rab® | - mha®
X 4 Y 4
Therefore,
mua a’b®
M=""T— 14
a’ +b? (14)

Also, torsional rigidity D is given by
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Stress function:-

w:w_l(xz_l_yz):l(az—bZJ (X2_y2)+ a?h? _1 (X2+y2)

2 2\ a’ +b? a’+b* 2
1( a*-b? , 1(a*-b? , a’b’
== -1 X' -~ 5—=5+1 +
a4 2(a2+b2 j 2(a2+b2 Ao

1 -20* ), 1 2a* ), a®’
"ol ) 2l ) +a2+b2
_ a2b2 X2 a2b2 y2 a2b2

== |- 2|+
a2+b2(a2] a2+b2(b2] a’+b’

—a%? ( x? yz ab?
= 4+ 0+
aiid a2+b2(a2 sz a’+b’

¢ = Constant = Lines of shearing stress

2 2
X
RS A

5 5 =Constant
a b

= Lines of shearing stress are family of confocapséls similarly to given

ellipse.
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N

Example: - Show that in the torsion of an elliptic cylinder,
;o 2padb [ o 2.2
a2 + b2

ezlvaz—b2

a

and max. shearing stress occurs on the end pdinigor axes.

Solution: - We know that

r =15 +15 [Using (12), (13)]

_ 2.\ 2,)\?

~ = 2uaa“y N 2uabx
a2+b2 a2+b2

_ 2Ua

a’ +b?

a4y2 + b4X2
Since

2 2 2
)
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. _ 2ua
bounbary az +b2

o
e (BT
I«

+ b*x?

a +b2 2X
Bl
2,ua'ab\/7
2 +p?

wheree is eccentricity of ellipse and is given by

. b2 ai-b?
e =1-—= 2
a a
or
a2e2 = az —b2 = b2 = az(l—ez)

Max. shearing stress occurs on bounda@py,, When X is minimum.

2,uaa2b

SO Tmax =
a2 +b?

= max. shearing stress occurs on the end pdiménmr axis.

8.7  Torsion of a triangular prism:

2 2

Dzwza—‘”+a_‘/’=o in R (1)
x> 0y2

w=%(x2+y2) on C (2)

For the equilateral triangular cross-section, wesaber solution of] 2(// = 0 given
by
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p+iy =ic(x +iy)® +ik (3)

= qo+i¢/:ic(x3+3ix2y—3xy2—iy3)+ik

= @=-3cxX’y+oy’ (4)
and ¢ = c(x3 —3xy2)+ k

From (2) & (4), we get

c(x3—3xy2)+k:%( 2+y2) on C (5)

The line x =a will be part of boundary C if

c(a3—3ay2)+k=%(a2+y2) Oy

= -3ac== and cal+k==a?

= -_1 and  k=2a’ (6)
6a 3

Put values of ¢ and k from (6) in (5), we get

-1(3 2) 22_1(2 2)
—|x” -3 +—a”=—(x"+ on C
6a 4 3 2 y

= x®+3ax® -3xy* +3ay* -4a’* =0 on C

This is cubic in x, but we know x &is a part of boundary, s& { a) is a factor.

=  x*(x-a)+4ax(x-a)+4a(x-a)-3y*(x-a)=0

= (x-a) [(x+2a—\/§y) (x+2a+\/§y)]= 0 (7)

Therefore, boundary C consists of three straigiesli
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x—a=0
x+2a+\/§y=0 (8)
x+2a—\/§y:O

AD = 3a

B (a,V3a)

D (a, 0)

x+2a+\/§y=0

\ o

v =g—j(x3 —:%xy2)+§a2 ©)

and 40:2—16‘x2y—6—1ay3
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i ly(x-a) (10) (i)

= 1, = ’LZI—Z [x2 + 2ax - y?] (10) (i)

2
Equation (10) gives tangential stresses at any line
On the line x =,

T, =

0
M (s
r —Z(G}a2 y2)

Y

r=[r2+12 =29 (392 - y?
Ly =t (e -y
This is maximum when y is minimum (i.e., y = 0).
3
T'max = Eﬂaa (aty=0)

T s zero at corne(la, \/§a)
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= Stress is maximum at the midpoint of line x §aa the linex-a=0), i.e.,

maximum at D and its value Jgé/,laa. Similarly, T is maximum at other two sides

at mid-points (E and F) and value of maximum simggstress isg,uaa.

Therefore, the shearing stress is maximum at tlellmpoints of the sides &ABC

: 3
and maximum value %,uaa.

y B (a, \/ga)

/

O D (a, 0

x+2a—\/§y=0

N

(-2a,0) 2a

~.

M=M, = j (xrZy - yrzx)dxdy = /”ZI—ZJ;J'(XS +2ax? - 3xy* + 2ay2)dxdy

R

Therefore
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x+2a

M:@ T f(x3+2ax2—3xy2+2ay2)dydx

x=—2a y=0
x+2a

:”_”T (x3+2ax2 %, 26ly2J[y]o@' dx

x=—2a

Q

_,uaI(X+2a) +2ax2_3x(x+2a) , 2a(x+2a)° o
2. 3 33 33

= Ha j[ (x+2a) + 2a0¢(x+2a) - 3(X+261) +2§a(X+Za)3} dx

\/_3a—2a
_ Ha {£+@+2a(x_4+2ax3j_(x+2a)4 x+i(x+2a)5 +2_a(X+2a)4j|a

4 3 43 60 9 4

L1 +2a[i4 +3a4J _('a, o (28]

43 63 5

Vo —g(—za)“—m{@+%a(—2a)3}+6—10(3a)5

5 5 5
_ ,ua{a a 2a(3+8)a 88’ ag.. 243, ?;25 2(1&4) 2a{4a4—1—:fa4H

LAt I T
JZal 5 2 12 12 18 60"

On simplification, we get

93

M = —/Jaa

Torsional rigidity, D = 1 M
a

93

D——
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Example: - Let Dy denote the torsion rigidity of circular cylind&how that for

cross-sections of equal areBg = kDy, Dy = 2”;/5 Do
where K = 22ab 5 <1
a“+b
Solution:-
D, = g/,lr“ for a circular cylinder of radius r.
_mua’d’ . .. o L
D, = e (Torsional rigidity of elliptic cylinder where& b are semi-major &
a

semi-minor axis of the ellipse, respectively.)

Dy :Lfm4 (Torsional rigidity of triangular lamina as Etpieral A of side
2./3 X)
Since areas of cross-section are same, therefore

m? = mb = 3J3x )

(forcircle) (forellipse) (for equilater& A)
D, mua®® 2 2a’h® 2a’h® .

e — X = = Using (1
D, a*+b*> mur? (a2+b2)r4 (az+b2)a2b2 [Using (1]
2ab
= =K
a® +b?
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2

&:—9 3,ux4x 24 :18\/§x s [Usmg(l)' X_:_” ]
D, 5 ur 5m 9x3 r2 33

D, _ 2J3
:> _ = —

0 15
= Dt=QDO

15

8.8  Summary

We have studied about torsion of cylindrical bafsrtional rigidity, Torsion and

stress functions, Lines of shearing stress. We halge studied about simple

problems related to circle, ellipse and equilatarahgle.

8.9 Keywords: Torsion, Stress functions, cylindrical bars, Shegrisiress,

Ellipse.

8.10 Self-assessment Questions

Q 1. Derive the expression for torsional rigidity in easf the torsion of an elliptic
cylinder.

Q 2. Derive the expression for torsional rigidity andsimg moment in case of the
torsion of a cylindrical cylinder.

Q 3. Express torsional rigidity in terms of Stresadtion.

Q 4. Show that, in the torsion of an elliptic cyler,

r:2,uaa—bbzx/az—ezx2 ; where e=§\/a2 -b?

a’+
and maximum shearing stress occurs on the end pominor axes.

Q5. Write a note on Prandtl stress Function.
MAL-643 169



Q6.

8.11

MAL-643

What is stress Function? Give its use.

Suggested Readings

l.S. Sokolnikoff, Mathematical Theory of Elasticitffata McGraw Hill
Publishing Company Ltd., New Delhi.

Y.C. Fung, Foundations of Solid Mechanics, Prenitlef, New Delhi.

S. Timoshenko and N. Goodier, Theory of ElastictcGraw Hill, New
York.

Martin H. Sadd., Elasticity Theory, ApplicationstaNumerics AP (Elsevier).
A.E.H. Love, A Treatise on the Mathematical TheofyElasticity, A" Ed.,

Dover Publications, New York.
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Chapter 9

Variational Methods
9.1  Objectives
In this chapter, we shall discuss the Variationedblems and Euler's Equations,
Variational methods. We shall also discuss theimm principles in deriving the
equilibrium and compatibility equations of eladtichamely, Theorems of minimum
potential energy, Theorems of minimum complemené&rgrgy, Reciprocal theorem
of Betti and Rayleigh. Further we study some prolsi®f Deflection of elastic string
and elastic membrane by certain loads.
9.2  Introduction
The determination of the state of stress in thequimg chapters was made to depend
on a solution of certain boundary- value problemsolving partial differential
equations. A different approach, exploiting certaimad minimum principles that
characterize the equilibrium states of elastic esdis developed in this chapter.
We shall be using the minimum principles in deryithe equilibrium and
compatibility equations of elasticity.
9.3 Variational Problems and Euler's Equations
We shall be concerned with the calculation of tkieegne values of functions defined
by certain integrals whose integrands contain angeweral functions assuming the

roles of arguments. As an example, consider tlegrat
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()= [Fxy, y) dx ®
Xo

where F(X,y,Y) is a known real functiorF of the real arguments, y and
y' :(dy/dx). The value of the integral (1) depends on the chofcg= y(x), hence

the notationl (y). We shall use the terrunctional to describe functions defined by
integrals whose arguments themselves are functions.

For the meaningfulness of(y), it is necessary to impose some restrictionshan t
choice of the argumeng(x), and on the prescribed functidh appearing in the

integrand of (1). It is assumed that at the enitpoof the interval(x,, x, ) the
specified values arg, and v,.

Thus,

Y(X) = Yo Y(X) =¥ (@)
wherey, and vy, are prescribed values.

Further, for the integral (1) be minimized by thendtiony = y(x), the necessary

condition is

O 4l o 3)
dy dx\ gy

Equation (3) is thdculer's equationassociated with the variational problény) =
minimum expressed by equation (1).

On expanding (3), we get the second order ordiddfgrential equation
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JO°F, O°F | 9°F _OF _

- 4
y ay'? y dyoy' oxoy' ady “)
for the determination of(x).
Similar calculations performed on the functional
I(y)=jF(x, VoYY e, ,y™) dx (5)
Xo

yield the Euler equation

2 n
oF _d a—F +d—2 a—F — e, +(-1" d’[OF ). 0o, (6)
oy dx\ay' ) dx“\ody dx" | ay"

when certain obvious restrictions on the continaityl differentiability ofF andy(x)

are imposed.

We consider next the problem of minimizing the deubtegral

I(u):”F(x,y,u,ux,uy) dx dy (7)

on the sef{u(x y)} of functions where eachu X y ip the set takes on the boundary
C of the regiorR specified continuous values =¢ s ()

The condition for the minimizing functian x(y, gxpressed by equation (7) is

OF_9(oF)_ afoF)_ g ®
ou 0x\du, dy| ou,
Similarly for the double integral

I(u):J"[F(x,y,u,ux,uy,uxx,uw,uyy) dx dy, 9)
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the condition for the minimizing functian(x, y) is

2 2 2
OF 0(O0F | 0[0dF +02 oF +02 oF +02 oF -0 (10)
ou ox\ du, dy\du, ) ox“{0du, ) dy“|du, ) dy°|du,

Note: Poisson’s equationl 2u=1 ,

with given Boundary conditions, is an Euler’s eqoiatof variational problem

Hu(x, y)] = J'“ux2 +u,”+ 2fu] dx dy = min.

Solution: Given variational problem is

Hu(x, y)] = J'Hux2 +u,” + 2fu] dx dy = min. 1)

Here F =u,” +u,’ +2fu (2)

Then the Euler’s equation
OF _O0fOF|_ 0|0F |_,
ou ox\du, dy| ou,
becomes

2f _ a(2ux) _ a(zuy) - O
ox ay

= U, +tu, =f

which is Poisson’s equatidﬁzu =f
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9.4  Theorem of minimum potential energy

Now, we introduce an important functional, callede t potential energy of
deformation,and prove that this functional attains an absolateimum when the
displacements of the elastic body are those oétjudibrium configuration.
Statement: Of all displacements satisfying the given Boundaonditions, those
which satisfy the equilibrium equations make theepbal energy as absolute
minimum.

Proof: If T, are the surface forces
and F, are the body forces
Also T; are given over surfacet and displacement are prescribed oxgr.

=%, +%,

The displacement for equilibrium state aug and arbitrary displacement+ A,
consistent with constraints imposed on the boday, over the portion>,, of 2>,
where displacement are givedy; = bt over the parkt, & are arbitrary and we
call these arbitrary displacemeidt;, the virtual displacement. The virtual work

AJ done by external forceB; andT; in a displacemendy; is defined by equation:
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U =T dy dT+|[F &, dr (1)
z r

Also strain energy U is given by

U =der (A
where

_/1192
W=2707 + g8 (B)

Sincer is fixed, T; and F; do not vary when we consider the displacenent(1)

can be written as

U =5|[TudL +[Fu dr )
z T

From (A),

U =5[ wdr (3)

From (2), (3), we get

{der— j'l}ui d> - jFiui dr]: 0 4)
T > T

:>J'W dr - J"I'iui d> - J'Fiui dr has a stationary value.
T > T

If we define the Potential Energy, V by

V=[wdr-[Tu dX - [FRu dr (5)
4 z T

Equation (4) givesgV =0 (6)
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Next we prove that the functional V assumes a mimmvalue when the
displacemenu; are those of equilibrium state.
To prove this, we will prove that incrememiV produced in V by replacing

equilibrium displacement; by u; + Au; is positive for all non-vanishingy; .

_Ag2 o (2924 e
AW ==J ”’%%‘um (5’9 ”’%Jju

We know thate; =%(Ui,j +uj,i)

1
qj u+du = U +U [ ]
1 1
:>e|j u+du :eli +E(d'li )vl' +§(djj)vi
79u+@:eii+( ) :z9+(d,l.).

:>AW——[79+ ][:9+ ]

o es@) +3), | e v d), ) |49 - e

2 2
= AW = A3(dy; ); + 248 (&) § +P ()
where

p=Aa), P+ £l + @), ] 20 ®)
or

M= AW=(195, +2ue, Jd) +P (-0 au), =(a),)
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= AW=r (), +P

Also

AU = [AWdr
:Tj r(d), dr +[Pdr
:'T[(rijdji)’jdr—'r[(rij|dei)dT+IPdT

= j(rijvj a, )d 2 —j (rij'jdji )dr + I Pdr (by Gausss divergenceheorem)
z T T

If body is in equilibrium, then

r; +F =0 in T

= r; =—F in T

and v, =T, on )

Therefore

AU = [T (@)d + [(Rdu)dr+Q Q=0 9)
z T

But AV =AU - [T, (&) d~ [(F &) dr

Put this in (9), we get

AV =Q, sinceQ=0 where Q=der2 0

T

HenceAV is positive. Hence the theorem.
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9.5 Reciprocal theorem of Betti and Rayleigh or Betti'sReciprocal theorem
or theorem of work and reciprocity

Statement : If an elastic body is subjected to two systemadyband surface forces,
then the work done by the first set of ford@s, F; ) acting over the displacements

produced by the second set is equal to work dortbdogecond set of force(lii' , Fi')

over the displacements produced by the first set of forces, i.e., prthe

J;(Fi ui')dr+£('l'i ui')da:J;(Fi'ui)dr+.£[‘|'i'uing (1)

Proof: - Equilibrium equations for the two systems of farege

zijj *Fi =0 (2)
Tijj +F =0 (3)
L.H.S of (1),
I(Fiui’]dr+j('l'iuijda=I(Fu de+I(T.JV1U. jda

= ( )dr+j(r U, ) dr (By Gausddivergencetheorem

( )dr+j(r” U+ IIJ dr

] 1 r '

! > T.U. =T.€ +T.W. =T.e

: [ FU +T”Ju| +Tijaj}dr Ul i i ij i
and 7,,+F =0

Therefore
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LH.S.of @ :jrijqj'dr

.[elj’(/‘ﬁdij +2,ue”.)dr
:I[/‘ﬁﬁ'-'-zl'eljelj’j dr [~ g e=q =7]

Here Integrand is symmetric in prime and unprimeaisde.

Therefore

RH.S.of @=[(As9+2uee)dr .

Hencej;(Fi ui')dr +£(‘I’i ui')da = J;(Fi'ui )dr +£(Ti'ui] do.

9.6 Theorem of Minimum complementary energy

Definition: The complementary energy V* is defined by the faiamu

V*=U—.|.(uiTi)dZ = J.Wdr—.[(ui'l'i)dZ

>y Zy

where U is the strain energy and W is the stragrgnfunction.

Statement: The complementary energy* has an absolute minimum when the stress

tensor 7j; is that of equilibrium state and the varied stafestress satisfy the
following condition:

() (oryj)  =0in 7

(i) (or;)v, =00on Tt

(iii) (5rij) is arbitrary on X,
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whereT; are prescribed surface forces d&pd are body forces.

2=3%, 4%,

Proof: - Let stresses corresponding to equilibrium statedanoted by, then

equilibrium equations are satisfied. So

r;; *F =0 in 4 (1)
T, =T on X 2)
u=f; on 2y
For varied state,rij' =Tijj + Orjj (3)
so that
() rj,+F =0 in 7 (4)
(i) rjv, =T, on X, ©)

(iii) On the part>, of X, rij' are arbitrary.
bm)jzo in 1 (6)
(or,)v,=0 on  3; )

(Jrij) is arbitrary on X,
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=717 -—@°?
R

= 1—U(Tu +5Tii)(rii +5T")_2£(‘9+59)2

= DTy T, v o, or, - (6 + 2009+ (50))
2E 2E

AW =W' -W = Increase in strain energy density function.

AW—l?UT o7, - Z6e0+w (o7,) (-o0=a0r,)

1 1

whereW(dr, ) = 1;; (o7, ) (o7, )—%(56)2 >

AW = (1+0’
E

T ‘% 6o, j(&u )+W (5Tij )
=8 (5Tii )+W(5Tii)

:%(Ui,j tuy, )(5Tij)+w(5Tij)
= AW = u,lor,)+wior,)
= (u or; ) +W(5Tii)_ui (5Tii )y,—

i ij

AU :.T[AWdr:j((u or; ) +W(5r ) (Jrij)’j)dr

i “tij
But (51'”)]:0 in 1.

Therefore third part of integration vanishes.
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Then using Gauss-divergence theorem,
AU :J'(ui 5rij)vj dX+ jW(drij)dr
2z T
= I(Ui AT )dZ+ Iw(é-rij )dT
2u T

(-.'Z=ZT+ZU, or,v; =0 on . Buton X, , wewrite Orv; =ATi)

Therefore

A {u - J'(uiTi)dZ}zjr'W(érij)dr 9)

Z,

We defineV” = complementary P. E. by

V*:U—j(uiﬂ)dZ (10)
2y

Thenav” = [wior, ) dr (11)

ButW >0

=AV 20 (12)

=V is minimum int.
Particular case:-
If the surface forced; are given over the entire surface, i¥,, = 0. Thenv” =U,

i.e., complementary P.E. becomes strain energy.n Ttieeorem of minimum
complementary P.E. implies the Theorem of minimumaiis energy (castigliano

theorem).
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9.7 Theorem of Minimum strain energy (Castigliano theoem)

Statement: The strain energy U of an elastic body in equilibr under the action of
prescribed surfaces forces is an absolute minimanthe set of all values of the
functional U determined by the solution of the spst

r,; *F =0 in T

rv, =T on >

Proof: Continuing from the previous theorem on complemgnénergy, we have
(Jrij)vj =0 on 2=2.02,

and equation (9) reduces to

AU = [w(ar, Jdr 2 0

showing that the increme®U in the strain energy U of a body in equilibriutate

is positive. Therefore, U is an absolute minimum.

Hence the result.

9.8 Deflection of an elastic string

Let a stretched string, with the end points fixed0a 0) and I 0). Let it be deflected
by a transverse load f(x) per unit length of thengt We suppose that the transverse
deflection y(x) is small (stretch in string is vegyall) and the change in the

stretching farce T produced by the deflection igligéble.
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dx

&3,0) (;;0) ~\\\\\\\m55_—£’f/////)

ds

J(x)

These are the usual assumptions used in derivingtieq for y(x) from consideration
of static equilibrium. We deduce this equation fritra principle of minimum P.E.

The Potential Energy, V is

vV=U —Jl-f(x)ydx

where V isthegainin P.E.
U is the Strain energy
|
jf(x)ydx is the energydueto actualload
0

where the strain energy U is equal to the prod@iche tensile force T by the total

stretche of the string.

| |
Then, e=j(ds—dx)=j(\/1+ y'? —1) dx and we are dealing with the linear theory,
0 0

y'2< 1, and we have
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|
= %{ y'? dx

Tty U =
= U—Ejyzdx (- U =Te)

0

a V=|j[12y'2—f(x)y} dx

Here F {% y'2 - f(x)y}

Euler’'s equation is

i a_F —a_F =0

dx\ay' )] oy

Therefore o =-f(x); oF =Ty
oy oy’

Then using this Euler’s equation, we get

d

—(Ty')+ f(x)=0

i UAARIY

=>Ty"+ f(X)=0

This is required equation for the transverse deflacf the string under load f(x).
9.9 Deflection of central line of a beam

Let the axis of beam of constant cross-sectioncidénwith the x-axis, and let that the

beam is bent by a transverse load p = f(x) perafigngth of beam.
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do

Central line of beam

Here shearing stressegy, 713,723 are negligible in comparison with the tensile

stress.

whereM is Bending moment
y is Deflection

| is M.

The straine,, = Do - My
E El

where E is modulus of elasticity.

Strain energy density function W is

The strain energy per unit length of the beam

M2
= dea: zjyzda
) 2E1%
M 2 M 2
= | =
2El? 2El

Also from Bernoulli-Euler Law,
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M=-Ely"

= J;Wda=%El(y')2

The total strain energy U is obtained by integbrer the length of beam and we

get

JI%EIy"2 dx—'[ f(x)ydx

0

<
I

J:E El y*?-f (x)y} dx

which is of the form

1(y)= XfF(x, VY. Y === y") dx

and Euler’s equation is

d d’ -
F, —&Fy,+WFy”— .......... =0

Here
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9.10 Deflection of an elastic membrane

Let membrane with fixed edges occupy some regidharxy-plane. We suppose that

the membrane is stretched so that the tensioruiiiisrm. Here load is (X, y).

y

N

dx

S(x,y)

- x
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e

[[(do - axdy)

R

e:j (Juf +ug +1—1)dxdy

R

2 2
where daz\/(%j + (?J +1 is the element of area of membrane in deformed
X y

state. If the displacement u and its first deriegiare small, then

= %”(uf +u§)dx dy
R

Hence U = % R_[(uf +u§)dxdy

and V= ”[Iz(uf +u§)— f(xy) u}dxdy
R

where u is the deflection u(x,y)

Here F :g(uf +u§)— f (X, y)u

oF
—=-f(xy), —=Tu —=Tu
ou () ou
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Then the Euler’s equation,

OF _O0fOF | 0|0F |_,

ou ox\du, dy| ou,

_0Tu, O0Tu, _
oy

= Tu, +Tu, + f(x,y)=0

= TO%u++f(xy)=0

= —fxy)

which is required equation.

9.11 Summary

We have studied about Variational methods and gbem@mems namely, Theorems of
minimum potential energy, Theorems of minimum comp@atary energy, Theorems
of minimum strain energy, Reciprocal theorem oftBatd Rayleigh. We have also
discussed about Deflection of elastic string, eddstam and elastic membrane.

9.12 Keywords: Potential energy, Complementary energy, Strainggndetti and
Rayleigh, Deflection, elastic string, Elastic menm@ra

9.13 Self-assessment Questions

Q 1. State and prove Theorems of minimum potential energy

Q 2. State and prove Betti’s reciprocal theorem.

Q 3. State and prove Theorems of minimum Complementaeygs.

Q 4. Discuss the problem of Deflection of central lofea beanby transverse load.

Q 5. Discuss the problem ddeflection of an elastic string by transverse |@emul

hence give its Euler’s equation.
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Q 6. Discuss the problem ddeflection of an elastic membrane by transversd loa

f(x, y).

9.14 Suggested Readings

1. 1.S. Sokolnikoff, Mathematical Theory of Elasticitrata McGraw Hill
Publishing Company Ltd., New Delhi.

2. Y.C. Fung, Foundations of Solid Mechanics, Prentled, New Delhi.

3. S. Timoshenko and N. Goodier, Theory of ElastictcGraw Hill, New
York.

4. Martin H. Sadd., Elasticity Theory, ApplicationsdtaNumerics AP (Elsevier).

5. A.E.H. Love, A Treatise on the Mathematical TheofyElasticity, A" Ed,,

Dover Publications, New York.
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Chapter 10

Direct methods
10.1 Objectives
In this chapter, we shall discuss how to find golutof Euler's equation in the
calculus of variations by direct methods namely Ritethod, Galerkin method and
Kantorovich method. Some numerical examples basethese methods are also
given.
10.2 Introduction
It was demonstrated in Sections (9.4) and (9.6)ttteadetermination of functions that
minimize the functional (equation (5) in sectiod)Xor the potential energy, or the
expression (equation (10) in section 9.6) for tlenplementary energy* , is
equivalent to obtaining solutions of appropriatdeEa equations. In the variational
problemV = min, the Euler equations are the Cauchy equilibrequations, while, in
the problenVv* = min, they are the compatibility equations.
In the previous chapter, we have studied some aB@sinimum principles in the
derivation of the differential equations for specgroblems. However, so by far more
important use of these principles relates to thestaction, with the aid of direct
methods of calculus of variations, of sequenceduottions which converge to
desired solutions of Euler's equations. One sudttmethod was proposed by Lord

Rayleigh and, independently and from a more gernprait of view, by W. Ritz. The
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other direct methods in the calculus of variatiorese proposed by R. Courant, K.
Friedrichs, B. G. Galerkin, L. V. Kantorovich, S. Kikhlin, E. Trefftz, and others.
10.3 Rayleigh —Ritz Method (or Ritz’'s Method in one dim@&sion)

How to find approximate solution of variational pfem using Ritz’'s Method.

Consider the variational problem

1[y]= [F (v, y)dx = min )

in which all admissible function y = y (x) are sutiat
y) =y, Y(%) =Y, (2)
We know that such a function y is a solution of Eder’'s equation

d _, _
Fy—&Fy—O (3)

A direct method to obtain the desired function wesposed by W. Ritz in 1911.

In this method, we construct a sequence of funstihich converge to desired
solution of the Euler’s equation (3).

Outlines of the Ritz Method:

Let y = y* (X) be the exact solution of the giveariational problem. Let I(y*) = m be
the minimum value of the functional in (1).

In this method, one tries to find a sequeficg( X } of admissible functions such that
lim 1 (y,(x) =m (4)
so that
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lim y,(x) =y*(x) (5)
is the required function.

According to Ritz, solution of (1) can be approxiethby a linear combination of

suitable chosen co-ordinate functicis(x)} .

Let approx. solution is taken as

Yn(X) = b + 1A (X) + C20(X) + ... +Cnéth (X) (6)
where ¢, Cy......... , C, are constants to be determined and n is the no. of
parameters. The functior{g (x)} are to be so chosen that the (6) satisfies thengive
B.C.’s. Generally, we chosemg, so that it takes on prescribed values at the ands
remaining ¢ (X) , (j =21) vanish at both ends.

The approx. solution (6) is then put in (1) anduiegd integration is performed,

getting a function of parameters's,

| =1(c1,C0eennnnnCpy) (7)

—.:O (8)

If G(i=12....,n)are the n parameters obtained by solving (8), thpprox.
minimizing function is
Yn(¥) =@ +C1Aa(X) + oo (X) + ... +Ch (X) -

Example: - Apply Ritz’s method to solve the problem
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1ly] = Jl'(y’2 -y - 2xy)dx =min

y©) =y®=0.

Solution: - we chooseg,=0

@ = xK(1-x) (Choose so that at end poingg, to vanish)
i.e., approx. solution is

Yn(X) = X(@L= X)Cy +CoXZ (L= X) + ..o +c X" (@-X)

= X(@A- X)|cy + CoX+ ... + cnx”_l}

Take n = 1, so that approx. solution is

y1(X) = x(1L=x)¢1
y1(x) = 1 - 2x)¢

Put yq in place of y in (1), we get

Jl-((l— 2x)2C12 —x? 1- x)2C12 —2y2 (1- X)Cl)dX = min

2 A 4 x5 ) ¢ x4 o
=S C X+ ———— -+ —c| —- = min
3 2 5 4) 3 a)

3 1
So I(c) :1—0012 _Ecl

The parametec; is determined from
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Therefore, the Ist approx. solutionys = 1_58 X(@1-X)

Take n = 2, so that approx. solution is

yo(X) = x@- x)(c; +cox)
yo(X) = |(L-2X)cy +Co (2x - 3x2)]

Putin (1) in place of y(x), we get

Jl- @L-4x+3x* +2x° = x*)cZ + 5 (4x* —12x° +8x* +2x° - x°) g _
X = min

o\ +CC, (4x—14x2 +10x° +4x* - 2x5)+ cl(— 2x% + 2x3)+ C, (— 2x° + 2x“)

13 »

L3 11
10502 EC]'CZ EC]_ ECz—mln

3
|(°1,02)=E012+

Now c, and c, are determined by putting

a_lzo, a_lzo
oc, oc,
So we have
Sc+3. 21
5* 10° 6
26 3 1
and —c,+—C =—
105 10 10
71 7
:> R
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Then 2 approx. solution is

Y, (%) = 7,(3) = x(- x)[%%gj

Example: - Apply Ritz’'s method to solve the problem
1

1ly] = J'(y’2 + yz)dx =min
0

y(©) =y@®=0.

Solution: we choosegy=x and

@ =x*(1-x), k=1,2,.....,n.

10.4 Ritz's Method in two dimension

Consider the functional in the form

I [u(x, y)] = ”F (x,y,u,u,,u,)dxdy = min

Let approx. solution is

n
un(x,y) = > cjgj(xy)
=1

so thatg; (x,y) are to satisfy the given boundary conditions.

i.e., approximate solution is
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wherecy, Co,........ cn are the parameters. Use in (1) and perform iategr, then

8l
ut—=0
p P

G

If a are values obtained, then approx. Minimizing soluis

=0T ) aley)
Example:- 1[u(x, y)| = Lj[(%]z +(g—;]2 - ZU} dxdy = min.

where R is squark{ < a, |y|<a and u = 0 on boundary of R.

Solution: - Let R is squaréx < a, |y| < a (shown in figure)

3 4

Letn=1,
Assume approx. solution as
u Oy, (x,y)=c,(x* -a?) (y* -a?)

where cpis the parameter to be determined.
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Then we see thall(x, y)clearly satisfies the given boundary conditions.

Then putting in (1), we get

u,]= j j [c 2x ’-a )) (c12y(x2 —az))2 —2cl(x2 —az)(y2 —az)] dy dx
[u,] :_J'aa j: [c124x2(y2 —az)2 +cf4y2(x2 —az)2 —2c1(x2 —az) (y2 —az)] dy dx

[4 y “+a’-2a’y )+ 4c12y2(x2 —az)2 —2c1(x2 —az)(y2 —az)] dy dx

:Zja.

Oty

5 3 E :
=2 {4cfx [3; +a‘y-2a’ éj 4cfy§(x2 —az)2 —2c1(x2 —az)(y?—azyﬂ dx
0

;1','—:9)

3

a 5
2J' {4clx (Z a5—§a5]+4cf%

:21 {4(:12)(2 [3+15—1oj +4012a3( _a2)2+§cla3(xz_a2)} i

(x2 —az)2 —ch(x2 —az)(a—;—asﬂ dx
0

15
:4J61 [4c1x 85a +— cla( a2)2+§cfa3(x2—a2)} dx
0

256 o g 32 ¢
=""cfa®-""ca
45Cl 9Cl
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256 g » 32 ¢
Thus | =——a -—ac
[01] 45 G 9 1

Then qis given by

i),
oc,
= 5—12a8 1—3—2 =0
45 9
c, = >
' 16a?

Therefore, Ist approx. solution is

uOu,(xy)= 1;2 (x2 —az) (y2 —az)

10.5 Galerkin Method
In 1915, Galerkin proposed a method of finding qpraximate solution of the
boundary value problems in mathematical physicds Thethod shall have wider
scope than the method of Ritz.
Here approx. solution of Boundary Value Problem loarmbtained.
Let us consider linear differential equation
Llul=0 inR 1)
subjected to some linear homogenous boundary ¢onslit
It is assumed, for the sake of simplicity that deenain R is two-dimensional.
We take an approx. solution of the problem in trenf
n
Up (X, ¥) = _zla i@ (x.y) vy
j=
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where g; (x, y) are suitable co-ordinate functions aafl are constant.
We suppose that the functiorz,u}(x, y) satisfy the same boundary conditions as the
exact solution u(x, y) and that the setp} is complete in the sense that every

piecewise continues functiori (x, y), say, can be approximated in R by the sum

N

a.@ (X, y) in such a way that
2.ag(xy)
j=1

2
Jstj(f—%cj(pj] dx dy (3)
K )
can be made as small as we wish.
Ordinarily, the finite sumu, given in (2) will not satisfy (1) and the substibn of
u, will yield
Lu,) = &(xy); &(xy)z0 in R (4)
If maximum of £,(x, y) is small, we can consider, (x, y)given is (2) as a satisfactory

approximation to the exact solution u(x, y).

Thus, to get a good approximation, we have to ahdbe constants; so as to

minimize the error functiorz, (x, y).

A reasonable minimization technique is suggestethéyollowing:
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Galerkin established that If one represents u(Xx, By the series

u(xy) :Za1 (q(x, y), with suitable properties and consider the nthtiglasum

i=1

u, (x,y) = Za1 qq(x, y), then the orthogonality condition
i=1

“.L[un]q),(x,y) dxdy=0 as n - o (5)

is equivalent to the statement L[u] =0 (6)

This led Galerkin to impose on the functidutu, a)set of orthogonality conditions

(now called Galerkin conditions)

[[LiuJa(xy)dxdy=0 ; (i=12... n) (7)

This yields the set of equations
J-J‘L(Zajqojjgdxdyzo (=12 n) (8)
R j=1

This set of n equations in (8) determines the coists; in the approximate solution

2).

Remark 1. When the differential equation and the boundaryddamns are self-
adjoint and the corresponding functional | (u)he problem

| (u) = min, 9)

is positive definite, then the system of Galerkquation in (8) is equivalent to the

Ritz system

MAL-643 203



0 _
Sa ) =0 (10)

J
Remark 2. It is important to the note that in Galerkin's farkation, there is no
reference to any connection of equation (1) withadational problem. Indeed, the
Galerkin method can be applied to a wider clasproblems phrased in terms of
integrals and other types of functional equations.

Example: Use Galerkin Method to find approx. solution of

0%¢=-2 inR, (1)
¢ =0 on boundary C of R, (2)
where R is the rectanglpf < a, |y <b.

Solution: Let R is the rectangléx < a, |y|<b (shown in figure)

Now we have to solve the system consisting of eguat(1l) and (2) by using the

Galerkin method. We write (1) as

L@w)=0, 3)
where
L=0%+2 (4)

We take an approximate solution in the form

a(xy) =0 =) (y? -b%) @ +a,x° +apy” +..o it 2, y ) (5)
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O a

This approximate solution satisfies the boundarnyd@mns in (3). Here

A, are constants to be determined by using Galenlkthod.

Let n =1, Ist approx. solution is

wl(xl y) =aqg = al(xz _az) (y2 _bz) (6)

with
@ =(x2—a2)(y2—b2) 7)
Theny satisfies given B.C.

Following Galerkin, is determined by orthogonality condition,

ii[(mzwl"'z) ﬂ] dy dx =0

Or

ii[(ﬂzwﬁZ) (x2-a2)(y? -b?)] dy dx =0 (8)
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0%y N 0%y

where [J 2(//1 =
x> 6y2

Now we have,

D2y, = 0%y, +£‘/:1 - a1[2 (Xz _a2)+2(y2 _bz)]

ox? oy )
=2a,[(x® - a?)+ (y? - b2
O jl jz [D2w1 + 2] (x2 —a2) (y2 —bz) dydx =0 [Using (8)]
=[] Rafbe -at)+ (v -b2)+ ] (¢ - a?) (y2 -b7) dyax=0 [Using (9)]

U
N

| [ﬁ‘i(x2 —a2)2 (y2 —b2)+ al(y2 —b2)2 (x2 —a2)+(x2 —az)(yz _b2)] dy dx =0
[‘5‘1(X2 —az)z(yz ‘b2)+ al(y2 —bz)z(x2 —a2)+(x2 —az)(yz _b2)] dy dx =0

(x2 —az) [(y2 —bz){al(x2 —a2)+]}+ ai(y4 +b? —2y2b2)] dy dx =0

U
0

o
Ct—p Ot—p g |
Ot—T S5 T—T

On integration w. r. t. y and x, we get
128 5 3( 5 32 35 3
—ab’la“+b -—ab’ =0

45 ( )al 9

5

= =
% 4la? + b?

Then Ist approx. solution is

w,(xy) jaf’sz)(xz -a?)(y* -b?)
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10.6 Kantrovich Method

In 1932, Kantorvich proposed a generalization ef itz method. The essence of the
method consists in the reduction of integration pafrtial differential equations
(Euler’s equation) to the integration of systemswmfinary differential equations.

It is applied to variational problems that invobeveral independent variables.

In the application of the Ritz method to the proble

I[u(x, y)]:”F(x,y,u,ux,uy)dxdy: min 1)

where u(X, y) takes on given values at boundamggion R.

Approx. solution of variational problem (1) candmnsidered in the form
u, (V) =Y ¢,(9 ¢(xy) 2)
j=1

where Cj (x) are unknown functions of the independent variabland @; (x, y) are

suitable chosen coordinate functions so as tofgdlie same boundary conditions as
imposed on u.

We then determined the coefficierts(x) so as to minimize (u, .)

We put (2) in (1) in place u(x, y),
| (u,) =1 {Zc (9 y)} = min (3)

Since ¢, (x, y) are known functions, we perform integration w.ytand we get

reduced form of the problem (1) as
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1[u,]= XfG(x,cj (%),€, (%)) dx = min 4)

X

Kantorvich proposed to determine the functiop(x) so that they minimize the
functional (4).

The functionsc; (x) are then determined by solving Euler's equatiomesponding
to (4), whichis a % order differential equation.

Example: - D%u=-1 1)
in the rectangle-a<x<a, -b<y<b (2)
where u = 0 on the boundary.

Solution: - Let R is the rectangléx| < a, |y|<b (shown in figure)

Equation (1) is Euler’s equation for the functional
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Hu(x, y)] = J'Hux2 +u,” - 2u]dxdy = min.

Let approx. solution is

u,(x y)=¢,(x) (b - y?)
Thenuw satisfied B.C.ony =b.

Substitute (4) in place of u(x, y) in (3), we get
a b
u,] = j J'[ 2 +(c,2y) - (bz—yz)] dy dx
-b
Perform integration w.r.t. y, we get
a b
] =2[ | oo + y* - 207y + ac2y? - 26,* - y?)] dyx
-a 0

5 2

b
h b®y” y’ y’
=2[1|bty+L -2 ¢’ +4c? 2| b?y -2 |t dx
I{ YTs 3 ) ' 3 ( Y73 .
:2T (742020 o+ et 26 b -2 || x
5 3 )" 3 3

= 2| 28 Ao 4°1b3 dx
15 3

=[] = j G—ngqZ +gb‘°’cl2 —gbe’clj dx

c1(x) is determined by solving Euler’s eq. correspondings).

The general Euler’s equation is
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a_F—i a_F =0
gy dx\| ay'

Herey is ¢,(x) ; c¢y=cy(x) ;

!

y' is ¢;(x)
Then the Euler’s equation becomes,

d|32 16 8
— | ==b%c(x) |-=Dbc,(x)+=b*=0
dXLS ' )} St ()

32

16,
:>_
1t

) -2, ()

+§b3=0
3
S 5

Or c¢/'- 207 C, = _4b2

which is homogeneous linear D.E. with constant foaciehts.

Characteristics equation is

N
C.F.=Ael'2 b 1+Be 12D

pl=—1 [_Eje" -1

2b?

Then solution of equation (7) is

\F X \F X
— X— - | —X— 1
c(x)=Ael2 b +Be 12 b+§
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where A and B are the arbitrary constants to beraened from B.C.

As c(a)=¢(-a)=0

Now
5.2 _|542
c,(a)=0 = Ae£b+Be£b:—% )
- [2x2 S.a
andcl(—a):O = Ae\f“+Be\/;b:__
(10)

Solving (9) and (10), we get

=

1 e'z?h
E 5 a 2
1+[eﬁbe

= A=B=-
(11)

Substituting the values of A and B from equatioh)(ihto (8), we get

queﬁb}_

c(x)= A

N
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1
Sou,(x, y):E(yz—bz) -
cosr{ 2 J

10.7 Summary

We have find solutions of Euler’s equation by direwethods such as Ritz method,
Galerkin and Kantorovich methods.

10.8 Keywords: Direct methods, Ritz method, Galerkin method, Kemiich
method, Euler’'s equation

10.9 Self-assessment Questions

Q 1. Use Kantorovich method to find an approximate solutioihthe Poisson’s
equation

D%u=-1,

inthe square-a<x<a, —-a<y<a,

where u = 0 on the boundary.

Q 2. Apply Ritz’'s method to solve the problem
1

1ly] = J'(y’2 -y® - 2xy)dx =min
0

yO=y@=0,

by considering the approximate solution in the fognm+ x(1- X)ay
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Q 3. Apply Ritz’'s method to solve the problem

I [u(X, y)] = Lj{(%)z +(g—;jz - 2u] dxdy = min.

where R is squark{ < a, |y|<a and u = 0 on boundary of R.
Q 4. Use Galerkin Method to find approx. solution of
0%y =-2 inR.
¢ =0 on boundary of R,
where R is the squarg{ < a, |y|<a.
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