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Chapter - 1 

Two-Dimensional elastostatic Problems 

1.1 Objectives 

In this Chapter, we familiarize the students with Two-dimensional elastostatic 

problems. We shall discuss about some basic definitions of Plane strain deformation, 

Principal strains and directions for plane strain deformation, Anti-plane strain, Plane 

stress deformation, Generalized plane stress and Airy stress function. Examples are 

also given to illustrate these topics. 

1.2 Introduction 

The two-dimensional problems with which we shall be concerned in this chapter fall 

into two physically distinct types: Plane strain deformation and Plane stress 

deformation. First of these problem arise in the study of deformation of large 

cylindrical bodies acted upon by the external forces so distributed that the components 

of deformation in the direction of axis of the cylinder vanish and the remaining 

components do not vary along the length of the cylinder. This is the class of problems 

in plane strain deformation. 

 



 

MAL-643 2 

The other type appears in the study of the deformation of thin plates, the state of stress 

is characterized by the vanishing of the stress components in the direction of the 

thickness of the plate. These are the problems in plane stress. 332313 ,, τττ  stress 

components are zero. 122211 ,, τττ  are independent of 3x . 

 

1.3 Plane strain deformation 

A body is said to be in the state of plane strain (or deformation), parallel to the 21xx -

plane, if the displacement component 3u  vanishes identically and the other two 

displacement components 1u  and 2u  are functions of 21 and xx coordinates only and 

independent of 3x  coordinate. 

Thus, the state of plane strain deformation (parallel to 21xx -plane) is characterised by 

the displacement components of the following type: 

( ) ( ) 0,,,, 321222111 === uxxuuxxuu       (1) 
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Here strain components 0332313 === eee  and 122211 ,, eee  are independent of 3x , i.e.,  

non vanishing components of strain are 

( ) 2,1,;
2

1
,, =+= βααββααβ uue    

Also non vanishing components of rotation tensor are 

( ) 2,1,;
2

1
,, =−= βααββααβ uuw  

The stresses follow from stress-strain relations  

ijijij eµϑλδτ 2+= ,            iie=ϑ  where λ and µ  are Lame’s constants and 

ijδ is Kronecker delta.      

i.e., the stresses are given by  

( )αββααβαβ µϑλδτ ,, uu ++=  2,1,; =βα      (2) 

where   ( )2,21,12211 uuee +=+=ϑ  

From here, we get  

 λϑτττ === 332313 ,0  

From (2), we get 

 

( ) ( )

( ) ( )µλ
ττ

µλττ

+
+

=+⇒

++=+

2

2

2211
2211

22112211

ee

ee

 

So  

( ) ( )µλ
ττλλτ

+
+

=+=
2

)( 2211
221133 ee  
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( )221133 ττστ +=⇒  , where 
)(2 µλ

λσ
+

=  is Poisson’s ratio. 

33τ⇒ is expressed in terms of 2211 and ττ . 

From equilibrium equations 

 ijij F−=,τ  

The components 1F  and 2F   of body forces must be independent of 3x  so far as ijτ  

do not depend on3x . Also 03 =F , since 33τ is not a function of  3x . 

Here equilibrium equations become 

 ( )21, , xxFαβαβτ −=          (3) 

( )2112,121,11 ,xxF−=+⇒ ττ        ( )013 =τQ     (4) 

( )2122,221,21 ,xxF−=+ττ    ( )023 =τQ     (5) 

Substitute (2) into (3), we get Navier’s equations  

Equation (2) is 

( )αββααβαβ µϑλδτ ,, uu ++=  

( )αββββααββαβ µ
β
ϑλδτ ,,, uu ++

∂
∂=⇒  

( )
( )ααα

βαβαβαββαβ

ϑµλϑ

µϑλδτ

,
2

,

,
2

,,

+∇+=

+∇+=⇒

u

uu
 

where ββϑ ,u=  

Hence equation (3) ( ) ααα µϑµλ uF 2
, ∇++=−⇒  



 

MAL-643 5 

( ) ( )21
2

, ,or xxFu ααα µϑµλ −=∇++      (6)  

where  

2
2

2

2
1

2
2

xx ∂
∂+

∂
∂≡∇  .  

(6) are known as Navier’s equations. 

We know that strain-stress relations are given by  

θστσ
EE

e ijij −+= 1
 

where 

  ( )332211 τττθ ++=  

Therefore 

( )

( )( )

( )( )221111

2211221111

3322111111

1
1

1

1

ττσστσ

ττσττστσ

τττστσ

++−+=

+++−+=

++−+=

EE

EE

EE
e

 

or 

( )[ ]2211111,1 1
1 σττσσ −−+==

E
eu  ,     (7a) 

( )[ ]1122222,2 1
1 σττσσ −−+==

E
eu       (7b) 

and 
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( ) ( )
E

uue 12
1,22,112

12
2

τσ+
=+=       (7c) 

Five out of six compatibility equations are identically satisfied. 

The only compatibility equation to be considered is  

12,1211,2222,11 2eee =+  

Using (7), we get 

 ( )( ) ( ) 12,1222,2211,1111,2222,11 21 τττσττσ =+−+−     (8) 

Differentiate (4) w.r.t. 1x and (5) w. r. t. 2x   and adding, we get 

02 2,21,112,1222,2211,11 =++++ FFτττ       (9) 

From (8) and (9), we get 

( )( ) ( ) 01 2,21,122,2211,1111,2222,1122,2211,11 =+++−+−++ FFττσττσττ  

( ) [ ] 01 2,21,111,2222,1122,2211,11 =+++++−⇒ FFττττσ  

( ) ( )[ ]
( ) ( ) 0

1

01

2,21,1
2211

2

2,21,12211
2

=
−
+

++∇⇒

=+++∇−⇒

σ
ττ

ττσ
FF

FF

 

Since ( )
( )

µλ
µλ

σµλ
λσ

2

2

1

1

2 +
+=

−
⇒

+
=  

So, we get  

( ) ( ) ( ) 0
2

2
2,21,12211

2 =+
+

+++∇ FF
µλ
µλττ  

( ) ( )2,21,11
2

2

2
FF +

+
+−=∇⇒

µλ
µλθ      (10) 
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where  ( )22111 ττθ +=  

Equation (10) is the compatibility equation in terms of stresses. 

In cylindrical coordinates ( )zr ,,θ  : 

If zr uuu ,, θ are displacement components, then the strains in terms of displacements 

relations are given by 

 rr
r

rr u
r

u
e ,=

∂
∂

=  








 +
∂

∂
= ru

u

r
e

θ
θ

θθ
1

 








 −
∂

∂
+

∂
∂

=
r

u

r

uu

r
e r

r
θθ

θ θ
1

2

1
 

0=== zzzrz eee θ  

where displacement components under plane strain conditions are given by 

( ) ( ) 0,,,, === zrr uruuruu θθ θθ  

Strain-stress relations are: 

( )[ ]θθσττσσ −−+= rrrr E
e 1

1
 

( )[ ]rrE
e σττσσ

θθθθ −−+= 1
1

and  

( )
E

e r
r

θ
θ

τσ+
=

1
 

θθττττ +=+ rr2211  
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r

F

r

F
FFdivFF r

rr ++==+ θθ ,
,2,21,1

r
 

Compatibility equations:   

( ) 0
1

111 ,
,2

2

2

2

=







++

−
++









∂
∂+

∂
∂+

∂
∂

r

F

r

F
F

rrrr
r

rrrr
θθ

θθ σ
ττ

θ
 

Examples of Plane strain deformations 

(A) The problem of stresses in an elastic semi-infinite medium subjected to a vertical 

line-load is a plane strain problem. 

 

Here, the line-load extends to infinity on both sides of the origin. The displacement 

components are of the type 

( ) ( )323332221 ,,,,0 xxuuxxuuu ===  

 (B) The problem of determination of stresses resulting from a tangential line-load at 

the surface of a semi-infinite medium is a plane strain problem. 
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(C) The stresses and displacements in a semi-infinite elastic medium subjected to 

inclined loads can be obtained by superposition of the vertical and horizontal cases. If 

the components of the line-load are αcosq  and αsinq  , the stresses can be 

determined. 

 

(D) The problem of deformation of an infinite cylinder by a force in the 21xx - plane 

is a plane strain problem. 
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In Cartesian coordinates 

( ) ( ) 0,,,, 321222111 === uxxuuxxuu . 

In cylindrical coordinates 

( ) ( ) 0,,,, === zr urvuruu θθ θ  

1.4 Principal Strains and Directions for Plane Strain Deformation 

A deformation for which the strain components 2211 ,ee and  12e  are independent of 

3x  and 0332313 === eee  is called a plane strain deformation parallel to the 21xx -

plane. 

For such a deformation, the principal strain in the direction of 3x -axis is zero and the 

strain quadric of Cauchy 

,2kxxe jiij ±=        (1) 

becomes 

,2 22
2222112

2
111 kxexxexe ±=++      (2) 

which represents a cylinder in three-dimensions. Let the axes be rotated about 3x -axis 

through an angle θ  to get new axes 321 xxxO ′′′ . 
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Let ),(cos jiij xxa ′=        (3) 

Then  

 
1x  2x  3x  

1x′  θcos  θsin  0 

2x′  θsin−  θcos  0 

3x′  0 0 1 

 

The strains pqe′  relative to primed system are given by the law 

ijqjpipq eaae =′         (5) 

For (ij) = (11), (22), (12), (21), we find 
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( ) ( ) θθ

θθθ
θθθθ

2sin2cos
2

1

2

1

2sin
2

2cos1

2

2cos1

cossin2)(sin)(cos

1222112211

122211

1222
2

11
2

12111212121122
2
1211

2
11

1111

eeeee

eee

eee

eaaeaaeaea

eaae ijji

+−++=

+






 −+






 +=

++=

+++=

=′

   

( ) ( ) θθ 2sin2cos
2

1

2

1
122211221111 eeeeee +−++=′      (6a) 

Similarly 

( ) ( ) θθ 2sin2cos
2

1

2

1
122211221122 eeeeee −−−+=′     (6b) 

( ) θθ 2cos2sin
2

1
12221112 eeee +−−=′      (6c) 

0333231 =′=′=′ eee         (6d) 

The principal directions in the 21xx -plane are given by 

012 =′e  

This gives 

( ) ( )2
2211

2
122211

12

4

1

1

2

1
2cos2sin

eeeeee
−+

=
−

= θθ
     (7a) 

and 

( ) ( )2211

12

2211

12 2

2

1
2tan

ee

e

ee

e

−
=

−
=θ       (7b) 
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Let φ  be the angle which the principal directions 1O  and 2O  make with the old axes 

in the 21xx -plane. Then 

( )2211

122
2tan

ee

e

−
=φ         (8) 

The principal strains 1e  and 2e  given by equations (6a, b) and (7a). We find 

( )1
222

1
111 , eeee ==  

2
12

2
2211221121 )(

4

1
)(

2

1
, eeeeeee +−±+=      (9) 

the shearing strain 12e′  will be maximum when 

( ) 02sin22cos

0

122211

12

=−−−⇒

=′

θθ

θ

eee

e
d

d

 

( ) ( )2
2211

2
122211

12

4

1

1

2

1
2sin2cos

eeeeee
−+

=
−−

=⇒
θθ

    (10a) 

This gives the direction in which the shearing strain 12e′  is maximum and maximum 

value of 12e′   is given by equations (6c) and (10a). We find 

( )2
2211

2
12max12 4

1
eeee −+=′       (10b) 

From equations (9) and (10b), we obtain 

max12
21

2
e

ee ′=−
        (11) 
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This shows that maximum value of shearing strain is half of the difference of two 

principal strains in the 21xx  plane. 

1.5 Anti-plane strain 

A body is said to be in the state of anti-plane deformation parallel to 21xx -plane if 

( )213321 ,,0 xxuuuu === . 

Example of Anti-plane Deformation 

Suppose that a force is applied along the line which is parallel to x1-axis and is 

situated at a depth h below the free-surface of an elastic isotropic half-space.  

 

The resulting deformation is that of anti-plane strain deformation with 

( ) 0,, 323211 === uuxxuu  

 Remark: - Two-dimensional problems in acoustics are antiplane strain problems. 

 

1.6 Plane stress deformation 
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An elastic body is said to be in the state of plane stress deformation parallel to the 

21xx -plane, if stress components 0332313 === τττ  and 122211 ,, τττ  are independent 

of 3x . 

From stress-strain relations,  

iiiiijijij uee ,,2 ==+= ϑµϑλδτ       (1) 

( )ijjiijij uu ,,2 ++= µϑλδτ  

 ( ) 3333221133 2 eeee µλτ +++=⇒   

( ) ( )
( ) ( )

µλ
λ

µλ
λ

λµλ

22

20

2,21,12211
333,3

221133

+
+−

=
+

+−==⇒

+++=⇒

uuee
eu

eee

 

Strain component 33e is not independent but it depends on 2211,ee , i.e., 033 ≠e . 

By definition of plane stress, 02313 == ττ and non-zero stress components 

are 122211 ,, τττ . 

From (1), we have ( ) 113322111111 22 eeeee µλµλϑτ +++=+=  

( ) 11221111 2
2

2
eee µ

µλ
λµτ ++
+

=⇒  (using value of 33e  ) 

and 

( ) 22221122 2
2

2
eee µ

µλ
λµτ ++
+

=  

 ( )1,22,11212 2 uue +== µµτ  

Combining these equations, we get 
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( )αββααβαβ µϑδ
µλ

λµτ ,,12

2
uu ++

+
=        (2) 

where      ( ) ( )2,21,122111 uuee +=+=ϑ  

Also  

( ) ( )2211332211 2

2
eeeeeekk +

+
=++=

µλ
µ

      (3) 

and from stress-strain relations, 

ijijij EE
e θδστσ −+= 1

, 

We have 

( ) [ ]221122111111
11 σττττστσ −=+−+=
EEE

e      (4) 

and [ ]112222

1 τστ −=
E

e         (5) 

1212
1 τσ

E
e

+=          (6) 

( )
E

e 2211
33

ττσ +−= ,     02313 == ee  

Using equation (2), the Equilibrium equations becomes  

0, =+ αβαβτ F ,       2,1, =βα  

( ) 0
2

2

,
,,1 =+







 ++
+

⇒ α
β

αββααβ µϑδ
µλ

λµ
Fuu  
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( ) 0
2

2
,,

1 =+











++

∂
∂

+
⇒ ααββββα

β
αβ µϑδ

µλ
λµ

Fuu
x

 

( ) 0
2

2
,

2
1

1 =+







+∇+

∂
∂

+
⇒ αβαβα

α
µϑ

µλ
λµ

Fuu
x

 

αα
α

µϑµ
µλ

λµ
Fu

x
−=∇+

∂
∂








 +
+

⇒ 2
1

1
2

2
 

where   

( ) ( )2,21,122111 uuee +=+=ϑ      and    
2

2

2

2
1

2
2

1
xx ∂
∂+

∂
∂≡∇ . 

If we put 
µλ

λµλ
2

2

+
=  

we get 

( ) αα
α

µϑµλ Fu
x

−=∇+
∂
∂+ 2

1
1  

and ( )[ ]αββααβαβ µϑδλτ ,,1 uu ++=  

( ) ( ) 0)1( 2,21,12211
2 =++++∇ FFσττ  

The only compatibility equation to be satisfied is  

( ) 12,1211,2222,11 2eee =+  

( ) ( ) ( ) 12,1222,2211,1111,2222,11 12 τσττσττ +=+−+⇒     (7) 

Here equilibrium equations become  

( )21, , xxFαβαβτ −=      
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( )2112,121,11 ,xxF−=+⇒ ττ         (8) 

( )2122,221,21 ,xxF−=+ττ         (9) 

Differentiate (8) w.r.t 1x and (9) w.r.t. 2x and adding, we get 

02 2,21,112,1222,2211,11 =++++ FFτττ        

( ) ( )( ) 0
1

1
2,21,122,2211,1111,2222,1122,2211,11 =+++−+

+
++ FFττσττ

σ
ττ  

[ ] ( )( ) 01 2,21,111,2222,1122,2211,11 =++++++⇒ FFσττττ  

( )[ ] ( )( ) 01 2,21,12211
2 =++++∇⇒ FFσττ  

which is required compatible equation. 

1.7 GENERALIZED PLANE STRESS  

Consider a thin flat plate of thickness 2h. We take the middle plane of the plate as 

03 =x  plane so that the two faces of the plate are hxhx −== 33 and . 

 

We make the following assumptions: 

(a) The faces of plate are free from applied loads. 
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(b) The surface forces acting on the edge (curved surface) of the plate lie in planes 

parallel to the middle plane ( )03 =x , i.e., parallel to 21xx  -plane and are 

symmetrically distributed w.r.t the middle plane 03 =x . 

(c) 03 =F   and components 1F  and 2F  of the body force are symmetrically 

distributed w.r.t the middle plane. 

Under these assumptions, the points of the middle plane will not undergo any 

deformation in the 3x -direction.  

Here ( ) ( ) 0,,,, 321222111 === uxxuuxxuu       

0332313 === τττ  

( )

( )

( )
µλ

λµλ
µλ

λ

µτ

λµλτ

λµλτ

2

2
where

2

2

2

2

221133

1212

112222

221111

+
=+

+
−=

=

++=

++=

eee

e

ee

ee

 

( )αββααβαβ µϑδλτ ,,1 uu ++=   

where   ααϑ ,1 u=  

Also ( ) ( )2211332211 2

2
eeeeeekk +

+
=++=

µλ
µ

  

The Navier’s equations are given by 
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( ) ( )21
21 , xxFu

x αα
α

µϑµλ −=∇+
∂
∂

+    

and 

( )
( ) ααµλ

µλϑ ,1
2

2

2
F

+
+−=∇  

which is compatibility equation, where 22111 ττϑ +=      

1.8 Airy Stress Function 

Considering Plane strain case  

( ) ( )21222111 ,,, xxuuxxuu ==        (1) 

2

2
22

1

1
11 ,

x

u
e

x

u
e

∂
∂

=
∂
∂

=         (2) 










∂
∂+

∂
∂=

1

2

2

1
12 2

1

x

u

x

u
e          (3) 

( )221133 ee += λτ          (4) 

( ) 221111 2 ee λµλτ ++=         (5) 

( ) 112222 2 ee λµλτ ++=         (6) 

1212 2 eµτ =           (7) 

Here equilibrium equations in the absence of body forces are 0, =βαβτ    

02,121,11 =+⇒ ττ          (8) 

02,221,21 =+ττ           (9) 

Therefore, there exists an Airy’s stress function ( )21, xxφ  
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s. t.  
21

2

122
1

2

222
2

2

11 ,,
xxxx ∂∂

∂−=
∂
∂=

∂
∂= φτφτφτ     (10) 

using (10), (8) and (9) are identically satisfied. The compatibility equation is  

21

12
2

2
1

22
2

2
2

11
2

2
xx

e

x

e

x

e

∂∂
∂

=
∂

∂
+

∂
∂

       (11) 

Solving (5), (6), (7) for strains, we obtain the strains 

( ) ( )[ ]

( ) ( )[ ]

1212

112222

221111

2

1

2
4

1

2
4

1

τ
µ

λττµλ
µλµ

λττµλ
µλµ

=

−+
+

=

−+
+

=

e

e

e

      (12) 

From (11) and (12), we obtain the compatibility equation in terms of stresses, 

( )[ ] ( )[ ] ( )
21

12
2

2
1

1122
2

2
2

2211
2 422

xxxx ∂∂
∂+=

∂
−+∂+

∂
−+∂ τµλλττµλλττµλ

  (13) 

Equation (10) and (13) give 

022 =∇∇ φ          (14) 

where 
2

2

2

2
1

2
2

xx ∂
∂+

∂
∂≡∇        (15) 

or 02 2222,1122,1111,
4 =++≡∇ φφφφ  

Here φ  is biharmonic function in the absence of body forces. 

From equation (2) to (5), we have stresses 
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( )

( )










∂
∂+

∂
∂=

∂∂
∂−=

∂
∂+

∂
∂+=

∂
∂=

∂
∂+

∂
∂+=

∂
∂=

1

2

2

1

21

2

12

1

1

2

2
2
1

2

22

2

2

1

1
2
2

2

11

2

2

x

u

x

u

xx

x

u

x

u

x

x

u

x

u

x

µφτ

λµλφτ

λµλφτ

      (16) 

Solving first two equations of (16), we get 

φ
α

φµ

φ
α

φµ

2
2
2

2

2

2

2
2
1

2

1

1

2

1
2

2

1
2

∇+
∂
∂−=

∂
∂

∇+
∂
∂−=

∂
∂

xx

u

xx

u

       (17) 

( )
( )µλ

µλα
2

where
+
+=  

Integrating (17), we get 

 ( )21
2

1
1 2

1
2 xfdx

x
u +∇+

∂
∂−= ∫ φ

α
φµ       (18) 

( )12
2

2
2 2

1
2 xgdx

x
u +∇+

∂
∂−= ∫ φ

α
φµ  

( ) ( )12 andwhere xgxf  are arbitrary constants. 

Due to 3rd equation of (16), we can neglect( ) ( )12 and xgxf . 

Then equation (18) becomes 

1
2

1
1 2

1
2 dx

x
u ∫∇+

∂
∂−= φ

α
φµ        (19) 
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2
2

2
2 2

1
2 dx

x
u ∫∇+

∂
∂−= φ

α
φµ  

which gives displacement in case of plane strain. 

Here 
( )

( ) ( )σ
µλ
µλ

α
−=

+
+= 1

2

2

2

1
, for plane strain 

and ( ) 11
2

1 −+= σ
α

 for plane stress. 

1.9 Summary  

In this chapter we have discussed about Plane strain, Principal strains and directions 

for plane strain deformation, Anti-plane strain and plane stress deformation and Airy 

stress function.  

Keywords Plane strain, Anti-plane strain, Plane stress, generalized plane stress, Airy 

stress function, Biharmonic function.  

1.10  Self-assessment Questions 

Q 1. Discuss the principal stresses and principal directions of stress in a state of plane 

stress. 

Q 2. What is plane deformation? Derive Beltrami-Michell compatibility equations for 

plane deformation. 

Q 3. Describe physically the Plane stress problems and derive the relevant field 

equations. 

Q 4.  Obtain Navier’s equations for the Plane strain and for Plane stress problems. 

Q 5.  What is Generalized plane stress? Derive the relevant field equations. 
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Q 6.   Explain Airy’s stress function. 

1.11  Suggested Readings 

1. I.S. Sokolnikoff, Mathematical Theory of Elasticity, Tata McGraw Hill 

Publishing Company Ltd., New Delhi. 

2. Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall, New Delhi. 

3. S. Timoshenko and N. Goodier, Theory of Elasticity, McGraw Hill, New York. 

4. Martin H. Sadd., Elasticity Theory, Applications and Numerics AP (Elsevier). 

5. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Dover 

Publications, New York. 
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Chapter - 2 

Displacements and stresses in terms of two analytic functions 

2.1 Objectives 

This chapter is concerned with the general method of solutions of two-dimensional 

boundary value problems in elasticity. In this Chapter, we familiarize the students 

with the General solution of Biharmonic equation. We derive the formula for stresses 

and displacements in terms of analytic functions. We shall discuss structure of 

functions and the arbitrariness in selection of functions ( )zφ  and ( )zψ  when the 

displacements or the stresses are given. We shall also discuss about first and second 

boundary value problems in plane elasticity. 

2.2 Introduction 

This chapter is devoted to a concise presentation of one general method of solution of 

certain broad classes of two-dimensional boundary-value problems in elasticity. The 

method is based on a reduction of the boundary-value problems in elasticity to the 

solutions of certain functional equations in a complex domain. The solution of the 

fundamental biharmonic boundary value problem can be made to depend on a certain 

general representation of the biharmonic function by means of two analytic functions 

of a complex variable. 

2.3 General solution of the Biharmonic equation: 

We find the solution in terms of two analytic functions. We consider the Biharmonic 

equation 
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022 =Φ∇∇           (1) 

Let ( ) 0then,, 1
2

211
2 =∇=Φ∇ PxxP  

i.e., 1P  is harmonic function. 

Let  

( ) ( )zz
i

xzzx

ixxzixxz

−=+=⇒

−=+=

2

1
,

2

1

,

21

2121

 

As 1P  is harmonic function in R (2D region), then there exists a conjugate harmonic 

function 2P  s.t. 

( ) 21 iPPzF +=    is analytic function in R. 

Let 

( )

( ) 21211

1

)(
4

1

)(
4

1

ippdziPPz

dzzFz

+=+=⇒

=

∫

∫

ψ

ψ
      (2) 

where 

∫∫ == dzPpdzPp 2211 4

1
,

4

1
 

( )z1ψ⇒  is also analytic function of z in R. 

So, ( ) ( )211 4

1
)(

4

1
iPPzFz +==′ψ  

Also from (2),  ( )
11

2

1

1
1 x

z

x

p
i

x

p
z

∂
∂










∂
∂+

∂
∂=′ψ  
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( ) 








∂
∂

+
∂
∂

=′⇒
1

2

1

1
1 x

p
i

x

p
zψ        








=

∂
∂

1
1x

z
Q  

( ) 








∂
∂+

∂
∂=+⇒

1

2

1

1
214

1

x

p
i

x

p
iPP  

,
4

1
1,1

1

1
1 p

x

p
P =

∂
∂=⇒    and 1,2

1

2
24

1
p

x

p
P =

∂
∂=  

Using C-R equations, 22,11,212,21,1 4

1
,

4

1
PppPpp =−===   (3) 

Consider  

[ ]

0
2

1

2

1

22

111

2,21,112211
2

=−−=

−−=−−Φ∇

PPP

ppPxpxp

 

( )2,222
2

1,111
2 2,2 pxppxp =∇=∇Q  

2211 xpxp −−Φ⇒  is harmonic function. Hence Φ has the structure as  

( )2112211 , xxqxpxp =−−Φ         (4) 

where ( )211 , xxq is also harmonic function in R. 

Because 1q  is harmonic function in R, then there exists a function 2q  

s.t.  ( )ziqq 221 ψ=+   is analytic. 

So,  

( )2112211 , xxqxpxp ++=Φ  = Real ( ) ( )[ ]zzz 21 ψψ +  

If we denote the conjugate complex by bars, then  
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( ) ( ) ( ) ( )[ ]zzzzzz 22112 ψψψψ +++=Φ       (5) 

where ( )z1ψ  and ( )z2ψ  are arbitrary analytic functions of 21 and xx . 

2.4 Formula for stresses in terms of analytic functions:  

The components αβτ  of the stress tensor can be expressed in terms of the functions 

( ) ( )zz ψφ and . 

We denote  

( ) ( ) ( ) ( )zzzz ψψφψ == 21 ,  

and Φ   by U , which is stress function, then (5) of last article can be written as 

( ) ( ) ( ) ( )[ ]zzzzzzU ψψφφ +++=2        (1) 

The stresses in terms of Airy’s stress function are  

12,1211,2222,11 ,, UUU −=== τττ      (2) 

and 

( )
( )2,1,

2

22,12,

12,22,2211

iUU
x

i

iUUi

iUUi

+
∂
∂−=

+−=
−=+ ττ

       (3) 

Similarly  

( )2,1,
1

12,11,1222 iUU
x

iUUi +
∂
∂=+=− ττ  

Let 2121 , ixxzixxz −=+=  

( ) ( )zz
i

xzzx −=+=⇒
2

1
,

2

1
21  
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zz and  are independent variables. 

zx
i

x

zz
i

x

zzx

∂
∂=

∂
∂+

∂
∂

⇒










∂
∂−

∂
∂=

∂
∂

∂
∂+

∂
∂=

∂
∂

2
21

2

1

         (4) 

We calculate  ( )21 ,, UiU +  

z

U

x

U
i

x

U

∂
∂=

∂
∂+

∂
∂

2
21

 

From (1), we have  

z

U

∂
∂

2 )()()( '' zzzz ψφφ ++=  

Therefore, 
21 x

U
i

x

U

∂
∂+

∂
∂

)()()( '' zzzz ψφφ ++=                                                           (5) 

From Eq. (3) and (5) on using (4) , we get 

[ ])()()( ''2
1211 zzzz

zz
ii ψφφττ ++









∂
∂−

∂
∂−=+  

 [ ])()()( '' zzzz
zz

ψφφ ++








∂
∂−

∂
∂=  

⇒ ( )  ])([)()( ''''''
1211 zzzzzi ψφφφττ +−+=+       (6) 
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Similarly  

1222 ττ i− [ ])()()( '' zzzz
zz

ψφφ ++








∂
∂+

∂
∂=  

 ( )])([)()( '''' zzzzz ψφφφ ′′+++=       (7) 

Adding (6) and (7), we get 

( ) ( )[ ] 42 ''
2211 =+=+ zz φφττ Real ( )][ ' zφ       (8) 

Subtracting (6) from (7), we get 

( ) ( )[ ]zzzi ''''
121122 22 ψφτττ +=−−  

Taking its conjugate complex, 

( ) ( )[ ]zzzi ''''
121122 22 ψφτττ +=+−        (9) 

Adding these last two equations, we get 

( ) ( ) ( ) ( )][ ''''''''
1122 zzzzzz ψφψφττ +++=−      (10) 

Equations (8) & (10) give stresses in terms of two analytic functions ( ) ( )zz ψφ & . 

Further adding Eq. (8) and (10), we get 

⇒ 222τ ( ) ( ) ( ) ( ) ( ) ( )][][2 '''''''''' zzzzzzzz ψφψφφφ +++++=  

⇒ 22τ = ( ) ( )][ '' zz φφ + ( ) ( ) ( ) ( )][
2

1 '''''''' zzzzzz ψφψφ ++++  

Subtracting Eq. (10) from (8), we get 

  ( ) ( ) ( ) ( ) ( ) ( )][][22 ''''''''''
11 zzzzzzzz ψφψφφφτ +++−+=  

or 
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( ) ( ) ( ) ( ) ( ) ( )][
2

1
][ ''''''''''

11 zzzzzzzz ψφψφφφτ +++−+=  

Therefore 

222 =τ Real ( ) ( ) ( ){ }




 ++ zzzz '''''

2

1 ψφφ  

11τ = 2 Real ( )[ ]z'φ - Real ( ) ( )[ ]zzz '''' ψφ +  

and 

12τi ( ) ( ) ( ) ( )[ ]zzzzzz ''''''''

2

1 ψψφφ −+−=          (Using (9)) 

2.5 Displacements in terms of two analytic functions: 

For plane strain problems, the generalised Hooke’s Law is given by 

( )βααβαβαβ µδλϑτ uu ++= 1  

22,1,1111 2 Uu =+=⇒ µλϑτ    (i) 

11,2,2122 2 Uu =+= µλϑτ    (ii)    (Using (2)) 

( ) 12,1,22,112 Uuu −=+= µτ    (iii)    (11) 

Therefore  

( )2,21,112211 22 uu ++=+ µλϑττ  

( ) ( )2,21,12,21,111,22, 22 uuuuUU +++=+⇒ µλ  

( ) 111,22, 2 ϑµλ +=+⇒ UU  

( ) ( )11,22,1 2

1
UU +

+
=⇒

µλ
ϑ        (12) 
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From Eq. (12) and 11(i), we get  

( )[ ] 22,1,111,22, 2
2

UuUU =++
+

µ
µλ

λ
 

( ) 11,
2
111,11,22,1,1

2
1 2

2
UUUUUuU −∇=−+=+∇

+
⇒ µ

µλ
λ

 

( ) UUu 2
111,1,1 2

12 ∇








+
−+−=⇒

µλ
λµ  

( ) UUu 2
111,1,1 2

2
2 ∇

+
++−=⇒

µλ
µλµ  

Similarly 

 ( ) UUu 2
122,2,2 2

2
2 ∇

+
++−=

µλ
µλµ       (13) 

But we know that  

2,21,111
2
1 44 ppPPU ==⇒=∇  

Using it, equation (13) reduces to  

( )
( ) 1,111,1,1

22
2 pUu

µλ
µλµ

+
++−=  

and  

( )
( ) 2,222,2,2

22
2 pUu

µλ
µλµ

+
++−=  

Integrating above equations w.r.t. 1x  and 2x , respectively, we get 
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( )
( ) ( )

( )
( ) ( )122,2

211,1

22
2

and

22
2

xgpUu

xfpUu

+
+
++−=

+
+
++−=

µλ
µλµ

µλ
µλµ

      (14) 

( ) ( )12 andwhere xgxf   are arbitrary constants.  

Also from 11(iii), we have 

( )1,22,112,12 uuU +=−= µτ  

Using (14), we get 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) α

µλ
µλµ

==′−=′⇒

′+′
=⇒








 ′+′
++

+
++−=+=−

sayxgxf

xgxf

xgxf
ppUuuU

,constant
2

0

2

2

12

12

12
1,22,112,1,22,112,

 

Integrating, we get 

( ) βα += 22 xxf  

( ) γα +−= 11 xxg  

where γβα ,,   are constants. 

So ( ) ( )12 and xgxf   correspond to rigid body displacements and can be neglected. 

Then from (14), we have 

( )
( )

( )
( ) 22,2

11,1

22
2

and

22
2

pUu

pUu

µλ
µλµ

µλ
µλµ

+
++−=

+
++−=
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( ) ( ) ( )
( ) ( )212,1,21

22
2 ippiUUiuu +

+
+++−=+

µλ
µλµ     (15) 

( ) ( ) ( ) ( )[ ] ( )
( ) ( )zzzzziuu φ

µλ
µλψφφµ

+
++′+′+−=+ 22

2 21  (on using (5) and Eq. (2) of 

previous article) 

( ) ( ) ( ) ( )[ ]zzzziuu ψφκφµ ′−′−=+ 212 ,     (16) 

where 
( )
( ) σ

µλ
µλκ 43

3 −=
+
+=  ,      (17) 

σ being the Poisson’s ratio. 

These are the expressions of displacements for plane strain problems. 

It follows from equations (8), (9) and (16) that the components αβτ  of the stress tensor 

and components αu   of the displacement vector are analytic functions of the real 

variables 21 and xx   throughout the interior of the region occupied by the body. 

In the generalized plane stress problem, λ  must be replaced by 
µλ

λµλ
2

2

+
=  and if the 

corresponding value of κ   in (16) is denoted by 

( )
( ) σ

σ
µλ
µλ

µλ
µλκ

+
−=

+
+=

+
+=

1

3

23

653
 

2.6 The structure of functions ( )zφ and ( )zψ  : 

Question. What is the difference in the forms of two sets of functions ( )ψφ,  and 

( )00,ψφ  that correspond to the same stress distribution in R?  
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Or discuss the arbitrariness in selection of functions ( )zφ and ( )zψ  when the 

displacements or the stresses are given by   

42211 =+ττ Real ( )][ ' zφ       

( ) ( )[ ]zzzi ''''
121122 22 ψφτττ +=+−  

( ) ( ) ( ) ( )[ ]zzzziuu ψφκφµ ′−′−=+ 212  

Proof:  

Case-I: - Let us consider two sets of functions ( )ψφ,  and ( )00,ψφ  that correspond to 

the same stress distribution in R.  

Then from relation  

42211 =+ττ  Real ( )][ ' zφ  

We get 

Real ( )][ ' zφ = Real ( )][ '
0 zφ  

( )z'φ⇒ and ( )z'
0φ can differ only at the most by a complex quantity. 

( ) ( ) iczz +=⇒ ''
0 φφ , where c is real constant. 

On integrating, we get  

( ) ( ) αφφ ++= iczzz0          (1)  

where α  is any complex constant. 

( )zφ  and ( )z0φ  can be replaced by ( )zφ and  ( ) αφ ++ iczz  and these will give same 

stress distribution. 
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Also 

 ( ) ( )[ ]zzzi ''''
121122 22 ψφτττ +=+−  

( ) ( ) ( ) ( )zzzzzz ''
0

''
0

'''' ψφψφ +=+⇒  

Using (1), ( ) ( )zz ''
0

'' φφ = ,  

then we have  

( ) ( )zz ''
0

'' ψψ =  

 On integrating twice, we get ( ) ( ) βψψ += zz0  

So, the state of stress in R will be unaltered if  ( )zφ  is replaced by ( ) αφ ++ iczz  and  

( )zψ  by ( ) βψ +z . 

Case II- If displacement throughout R is satisfied.  

Here  

( ) ( ) ( ) ( )[ ]zzzziuu ψφκφµ ′−′−=+ 212  

( ) ( ) ( ) ( )[ ]zzzziuu 000212 ψφκφµ ′−′−=+  

For same stress distribution, displacements are considered same. 

 ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]zzzzzzzz 000 ψφκφψφκφ ′−′−=′−′−  

From (1), Put ( ) ( ) αφφ ++= iczzz0  

( ) ( ) iczz −′=′ φφ0  
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( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

( ) ( ) ( ) κακψψ

ψφκακκφψφκφ

++=′−′⇒

′−+′−++=′−′−⇒

10

0

iczzz

ziczzziczzzzzz

 

Substitute ( ) ( ) βψψ zzz +=0        ( ) ( )( )βψψ +′=′ zz0Q  

( ) ( ) ( ) κακψβψ ++=′−+′ 1iczzz  

,0=⇒ c    καβ =  

2.7 First and Second Boundary Value Problems 

In this article it is shown that the fundamental boundary value problems in plane 

elasticity can be reduced to the determination of functions  ( )zφ  and ( )zψ  from the 

prescribed values of certain combinations of these functions on the boundary of the 

region. 

First B.V.P.:- 

Stresses or loads are known on the boundary, i.e., stresses ( )222111 , TT == ττ  are 

known on the boundary, and ( )12,12 U−=τ  

Then, we know that 

( )

( )

( ) ( ) const.

.const

and

const.

212,1,

212,

121,

++=+⇒

+=−=

+=−=

∫

∫

sfisfiUU

sfdsTU

sfdsTU

 

( ) ( ) ( ) ( ) ( ) .const21 ++=′+′+⇒ sifsfzzzz ψφφ  

Second B.V.P.:- 
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 Here displacements are prescribed on the boundary, i.e., 1u  and 2u  are given on 

boundary. 

Let )(),( 2211 sgusgu ==  

)()( 2121 sigsgiuu +=+⇒  

But  

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]zzzzigg

zzzziuu

ψφκφµ

ψφκφµ

′−′−=+⇒

′−′−=+

21

21

2

2

 

is known on boundary. 

Such types of problems are known as Second B.V.P. 

2.8 Boundary conditions in terms of Normal and tangential components: 

If Normal and tangential components of surface tractions are known on the boundary 

of the body, then prove that B.C.’s are expressed as: 

( ) ( ) ( ) ( )[ ]zzzezziTN i ψφφφ α ′′+′′−′+′=− 2    on C (Boundary) 

where N is Normal component and  

T is Tangential component, 

α is angle measured from the positive direction of 1x -axis to the normal. 

Proof: Here 21xox   is one coordinate system. 

21xxo ′′  is other system obtained by rotation from the coordinate system 21xox . 

( 12111211 ,or, ττ ′=′=′=′= TNTTTN ) 
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From the tensorial character, we have 

2,1,; ==′ jill pqjqipij ττ  

Therefore  

qqpppqpqpqiqipii orll τττδττ ===′  

22112211.,. ττττ +=′+′ei         (1) 

2212
2

1212111111
2

221212211112121211111111

21121111

1111

2 τττ
ττττ

ττ
ττ

llll

llllllll

llll

ll

qqqq

pqqp

++=

+++=

+=

=′

 

Since ( )jiij xxl ,cos ′=  

Therefore  
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α

α

α

α

cos,cos

sin,cos

sin,cos

cos,cos

2222

1221

2112

1111

=




 ′=

−=




 ′=

=




 ′=

=




 ′=

xxl

xxl

xxl

xxl

 

22
2

1211
2

11 sinsincos2cos ταταατατ ++=′  

Similarly  

22
2

1211
2

22 cossincos2sin ταταατατ +−=′  

( ) 2212
22

112112 cossinsincoscossin τααταατααττ +−+−==′ pqqpll  

Now 

[ ] [ ] [ ] 221211121122 2sin2cos2cos2sin22sin2cos2 ταατααταατττ iiii ++−−+−=′+′−′
 

[ ]
[ ]121122

2

22
2

1211
2

121122

2

2sin2cos
2

2

τττ

ττααττττ

α

αα

ie

ei
i

ei

i

ii

+−=

++−−=′+′−′⇒
   (2) 

Subtracting (2) from (1), we get  

( ) ( )[ ]

( ) ( )[ ]

( ) ( )[ ]zzzi

zz

iei i

''''
121122

''
2211

121122
2

2211
'
12

'
11

22

2

but

222

ψφτττ

φφττ

τττττττ α

+=+−

+=+

+−−+=−

 

Taking  TN == '
12

'
11 , ττ  
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( ) ( ) ( ) ( ) ( )( )[ ]

( ) ( ) ( ) ( )( )zzzezziTN

zzzezziTN

i

i

''''2''

''''2''22

havewe,So

ψφφφ

ψφφφ

α

α

+−+=−⇒

+−+=−
 

which is the required result. 

2.9 Summary  

In this chapter we have discussed about the general solution of Biharmonic equation. 

We represented stresses and displacements in terms of complex potentials. We also 

discussed the arbitrariness in selection of functions ( )zφ and ( )zψ  when the 

displacements or the stresses are given. We have derived first and second boundary 

value problems in plane elasticity. 

2.10 Keywords Plane strain, Plane stress, Biharmonic function, analytic functions, 

Boundary value problems.  

2.11  Self-assessment Questions 

Q 1.  Prove that the functional form of Airy’s stress function Φ   is :  

 ( ) ( ) ( ) ( )[ ]zzzzzz 22112 ψψψψ +++=Φ     

where ( )z1ψ  and ( )z2ψ  are two arbitrary analytic functions of complex variable. 

Q 2.  Starting with the equations of equilibrium, show that for plane strain conditions 

( ) ( ) ( ) ( )[ ]zzzziuu ψφκφµ ′−′−=+ 212 ,     

where  ( )zφ  and ( )zψ  are analytic functions and σκ 43−= ,  σ  being the 

Poisson’s ratio. 
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Q 3. Assuming plane strain conditions, obtain expressions for stresses 

122211 and, τττ  in terms of two analytic functions. 

Q 4. Prove that boundary conditions are expressed as: 

 ( ) ( ) ( ) ( )[ ]zzzezziTN i ψφφφ α ′′+′′−′+′=− 2    on C ,  

where Normal (N) and tangential (T) components of surface tractions are known 

on the boundary (C) of the body and   α  is angle measured from the positive 

direction of 1x -axis to the normal. 

2.12  Suggested Readings 

1. I.S. Sokolnikoff, Mathematical Theory of Elasticity, Tata McGraw Hill 

Publishing Company Ltd., New Delhi. 

2. Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall, New Delhi. 

3. S. Timoshenko and N. Goodier, Theory of Elasticity, McGraw Hill, New 

York. 

4. Martin H. Sadd., Elasticity Theory, Applications and Numerics AP (Elsevier). 

5. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th Ed., 

Dover Publications, New York. 
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Chapter-3 

Viscoelastic Models 

3.1 Objectives 

In this chapter, we shall discuss about some basic definitions related to Viscoelastic 

Materials and to derive constitutive equations for two viscoelastic models namely 

Maxwell and Kelvin. Further, the creep and relaxation phenomena will be discussed. 

3.2 Introduction  

The property of the body to regain its original configuration (length, volume or shape) 

when the deforming forces are removed is called elasticity. The materials or 

substances which have property of elasticity are called elastic materials. For example, 

spring.  For an elastic material there exists a one-to-one coordination between stress 

and strain. In the simplest case, there are six algebraic equations giving the strain 

components in terms of the stresses or vice versa.  If they are linear, they are known 

as Hooke’s law. Some materials show a pronounced influence of the rate of loading, 

the strain being larger if the stress has grown more slowly to its final value. The same 

materials display creep, that is, an increasing deformation under sustained load, the 

rate of strain depending on the stress. Such materials are called viscoelastic. The 

constitutive equations of these materials may be either linear or nonlinear. The 

viscoelastic materials are time dependent while elastic materials are time independent. 
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3.3 Viscoelastic Materials 

Elastic material: The materials or substances which have property of elasticity are 

called elastic materials. For example spring, Elastic ball. 

 

 

Spring before deformation 

 

 

Spring after deformation 

Then according to Hook’s law, within elastic limit, the stress developed is directly 

proportional to the strain produced in a body, i.e. 

strainstressα , 

or strainstress ×= E ,  

i.e., Ee=τ  , where E is a constant and is known as Modulus of elasticity of the 

material of the body or Young’s Modulus. 

Viscosity: Viscosity is the property of a fluid (liquid or gas) by virtue of which an 

internal frictional force comes into play when the fluid in motion and opposes the 

relative motion of its different layers. It is also called fluid friction. 

Viscous material: The materials having the property of viscosity are called viscous 

materials. For example: honey, dashpot.  
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Dashpot: Consider the dashpot shown in figure below. A piston is moving in a 

cylinder with a perforated bottom so that no air is trapped inside. Between the 

cylinder and the piston wall, there is a rather viscous lubricant (liquid) so that a force 

is needed to displace the piston. The stronger this force, the faster the piston will 

move. 

 

 

Dashpot  

 

3.4  Governing equation for viscous material: 

Let L be the original length of dashpot and   l  be the extension produced in the 

dashpot during deformation, then after deformation length of dashpot is L + l. 
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Now 
( )

t

l

t

L

t

l

t

Ll

∂
∂=

∂
∂+

∂
∂=

∂
+∂

  (QL is constant)    (1) 

Since eLl
L

l
e =⇒=  

( )
t

e
L

t

eL

t

l

∂
∂=

∂
∂=

∂
∂

 

Then (1) 
( )

t

e
L

t

Ll

∂
∂=

∂
+∂

⇒  

Let τ be the stress developed in dashpot, then we have 

( )
t

Ll

∂
+∂ατ  

( )
KL

t

e

t

e
KL

t

Ll
K =

∂
∂=

∂
∂=

∂
+∂=⇒ ηητ where  

Therefore in viscous medium, the basic governing equation is 

strainofratestress α , i.e.,  

e
t

e

t

e
&ηητατ =

∂
∂=⇒

∂
∂

, 

where η   is coefficient of viscosity. 
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The quantity e&  is called the strain rate where dot represents ordinary or partial 

derivatives with respect to time t. Thus, a material whose stress is proportional to the 

strain rate is called a viscous material.  

3.5   Three basic viscoelastic materials (or models) 

Linear viscoelastic materials are the combination of elastic and viscous materials. 

Viscoelastic materials (models) are constructed by the combining spring and dashpot. 

a) Maxwell Model (or Maxwell materials):- In this model, spring and dashpot 

are connected in series. This model is also called Maxwell fluid. 

 

Maxwell model 

b) Kelvin Model: - In this model, spring and dashpot are connected in parallel.  

 

Kelvin model 

c) Standard Linear Solid (or three parameter solid):- In this model, a spring 

is connected in series with a Kelvin’s model.  
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Standard Linear Solid 

 

For every model, we shall consider following three things: 

1. Constitutive equation (stress-strain relations) 

2. Creep Phase 

3. Relaxation Phase 

Principle of Superposition: If stress 1τ   produces strain 1e   and stress 2τ    produces 

strain 2e , then the total stress 21 ττ +   produces strain 21 ee + . 

Heaviside’s unit step function: It is denoted as ( ) ( ) ( )ttutH ∆oror  and is defined 

as ( )




<
>

=
0,0

0,1

t

t
tH  

The function ( )tH   is discontinuous at t = 0. 
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Dirac delta function: It is denoted as ( )tδ  and is defined as  

( )




=∞
≠

=
0,

0,0

t

t
tδ  

Then ( ) ( ) 1
0

0

== ∫∫
+

−

∞

∞−

dttdtt δδ  

Creep Phase: Creep is the slow increasing deformation of a material under constant 

stress and the rate of strain depends upon the stress. 

For this, consider the stress cycle 

( ) ( ) ( )tHtHt where,0ττ =  is unit step function. So  





<
>

=
0,0

0,
)( 0

t

t
t

τ
τ  

For an elastic material, the strain cycle is 

( ) ( ) ( )tHtHete where,0=  is unit step function. So  
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



<
>

=
0,0

0,
)( 0

t

te
te  

But for viscoelastic material, the corresponding strain cycle is, ( ) ( )tJte 0τ=  

where ( )tJ  an increasing function of t.  ( )tJ  is different for different materials and is 

called creep compliance. 

 

 

Relaxation Phase: Consider the strain cycle 
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( ) ( )tHete 0=  





<
>

=
0,0

0,0

t

te
 

For an elastic material 

( ) ( )tHt 0ττ =   





<
>

=
0,0

0,0

t

tτ
 

For viscoelastic material, ( ) ( )tYet 0=τ  ,where ( ) 0,0 <= ttY  

( )tY  is called Relaxation Modulus. 

( )tY  is a decreasing function of t and is different for different materials. 
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3.6 Maxwell Model 

A spring and a dashpot are connected in series. 

 

Since elements are connected in series. Hence, elongation is distributed on both 

elements. 

If e is the total elongation then eee ′′+′=       (1) 

 where e′ is the elongation in the spring and e ′′  is the elongation in the dashpot. 

The stress-strain relation for spring is eE ′=τ      (2) 

The stress-strain relation for dashpot is 
t

e

∂
′′∂=ητ      (3) 

To obtain the stress-strain relation for the Maxwell Model, eliminating  e′ , e ′′   from 

equations (1)-(3). 
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From (1), differentiate w.r.t. time t, 

eee &&& ′′+′=  

or 
η
ττ +

∂
∂=

∂
∂

tEt

e 1
 

or e
E

&& ητητ =+          (4) 

Comparing it with the standard stress-strain relation for a viscoelastic material 

k

km

k
kk

km

k
k

dt

ed
q

dt

d
p ∑∑

==
=

00

τ
  with   10 =p  

.................. 21021 +++=+++ eqeqeqpp &&&&&& τττ  

We have ηη === 101 ,0, qq
E

p   

Equation (4) can be re-written as 

eE
E

&& =+ τ
η

τ            (5) 

Or     eE
t

&& =+
*

ττ ,          (6) 

where 
E

t
η=* is Relaxation time. 

Equation (5) or (6) is required constitutive equation (or stress-strain relation) for a 

Maxwell model. 

Creep Phase for Maxwell model: 
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Consider the stress cycle, i.e. we apply a constant stress at t = 0 and discuss the 

behaviour of strain. 

( ) ( )tHt 0ττ =   





<
>

=
0,0

0,0

t

tτ
         (7) 

From equation (5) and (7) 

t

e
E

E

t ∂
∂=+

∂
∂

0
0 τ

η
τ

 

t

e
E

E

∂
∂=⇒ 0τ

η
 

η
τ 0=

∂
∂

⇒
t

e
 

Integrating w.r.t. ‘t’ , we get 

 ( ) 0
0 ette +=

η
τ

,         (8) 

where 0e    is constant of integration. 

To find 0e , we integrate equation (6) w.r.t. time (t) between ( )εε ,−  

∫∫∫
−−−

∂
∂=+

∂
∂ ε

ε

ε

ε

ε

ε

ττ
dt

t

e
Edt

t
dt

t *
 

( ) ( ) ( ) ( )[ ]εετετετ
ε

ε

−−=







++−− ∫∫

−

eeEdt
t0

*
0

0

0  

But ( ) ( ) 0=−=− εετ e  
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Since material is in the natural state, therefore  

( ) ( )εετετ eE
t

=+
*
0  

Taking limit as +→ 0ε , therefore  

( ) ( )++ = 00 eEτ           (9) 

Taking +→ 0t  in equation (8), we get 

 ( ) 00 ee =+  

( )
0

0
e

E
=⇒

+τ
                 (Using (9)) 

E
e 0
0

τ=⇒  

Using this value in equation (8), we get  

( ) ( )*0
0

00 1
tt

E

t

E
tte +=







 +=+=
η
τ

η
ττ

η
τ

 

Comparing with the definition of creep compliance 

( ) ( )tJte 0τ=  

So, ( ) ( )*1
tttJ +=

η
          (10) 
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It is observed that for a fixed amount of stress, the strain instantly takes a finite value, 

which is the behaviour of an elastic solid. So, for large values of t, the deformation 

goes infinitely, which is behaviour of a viscous fluid. 

Relaxation Phase for Maxwell model: 

We assume that the strain cycle is given below and we discuss behaviour of stress 

under constant strain. 
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( ) ( )tHete 0=  





<
>

=
0,0

0,0

t

te
        (11) 

From equation (6), for t > 0, we get 

0
*

=+
t

ττ&  

I.F. =  
**

1

t
tdt

t ee =
∫

 

Solution is ( ) ∫ += dtet t
t

0
*τ  constant( )0τ  

( ) *

0
t

t

et
−

= ττ ,         (12) 

where 0τ  is constant of integration. 

 Taking limit as +→ 0t  in equation (12), we get 

( ) 00 ττ =+  

( ) 0000 EeEe =⇒=⇒ + ττ  

Substituting the value of 0τ  in equation (12), we get 

( ) 




==
−−

**

00
t

t
t

t

EeeeeEtτ        (13) 

Equation (13) is required stress cycle. 

Comparing with definition of ( )tY , 
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( ) *t
t

EetY
−

=  

 

 

 

For a finite amount of strain, the Maxwell Model exhibits a finite amount of stress 

instantly and then it goes on decreasing. 

For large values of t, the Maxwell material has complete Relaxation. 
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3.7 Kelvin Model 

In this model a spring and a dashpot are connected in parallel. 

 

Suppose model is acted upon by a force P causing stress τ . Sine elements are 

parallel, so τ  is distributed itself upon both elements. 

Hence  τττ ′′+′= ,         (1) 

 where τ ′ is the stress on spring and τ ′′  is the stress on the dashpot. 

Let e  is the elongation of Kelvin element (model).      

The stress-strain relation for a spring is Ee=′τ      (2) 

The stress-strain relation for a dashpot is 
t

e

∂
∂=′′ ητ      (3) 

To obtain the stress-strain relation for the Kelvin element (model), eliminating τ ′  and 

τ ′′  from equations (1)-(3). 

From (1)  

eEe &ητ +=           (4) 

Comparing it with the standard stress-strain relation for a viscoelastic material, we 

have 

η== 10 , qeq  
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Equation (4) can be re-written as 

η
τ

η
=+

∂
∂

e
E

t

e
           (5) 

Or 
η
τ=+

∂
∂

*t

e

t

e
          (6) 

where 
E

t
η=*  = Relaxation time.  

Equations (4) and (6) are required stress-strain relation for Kelvin Model. 

Creep Phase: 

Consider the stress cycle 

( ) ( )tHt 0ττ =   





<
>

=
0,0

0,0

t

tτ
         (7) 

From equation (4) and (7), for t > 0 

η
τ

η
ητ 0

0 or =+
∂
∂

∂
∂+= e

E

t

e

t

e
Ee  

Its integrating factor is given by 

I.F. =  
**

1

t
tdt

t ee =
∫

 

So, solution of equation is  

( ) 1
0 **

cdteete t
t

t
t

+= ∫ η
τ
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**0 t

t
et

η
τ= + 1c  

Or   ( ) *

1
0 t

t
ec

E
te

−
+=

τ
        (8) 

where 
∗

=
t

E
η

 and  1c   is constant of integration. 

To find 1c , we integrate equation (5) w.r.t. time (t) between ( )εε ,−  

( ) ∫∫∫
−−−

=+
∂
∂ ε

ε

ε

ε

ε

ε
τ

ηη
dtdtte

E
dt

t

e 1
 

( ) ( ) ( )













+=














++−− ∫∫∫∫

−−

ε

ε

ε

ε
τ

ηη
εε

0
0

0

0

0

0
1

0 dtdtte
E

ee  

But ( ) 0=− εe  

Since material is in the natural state, therefore  

( ) ετ
ηη

ε
ε

0

0

1
)( =+ ∫ dtte

E
e  

Since viscoelastic material is a combination of elastic and viscous material. Hence, for 

0ττ = for  t > 0, there is instant strain 0e  for t > 0. 

So, ∫ =
ε

ε
0

0)( edtte  

Therefore,  ( ) ετ
η

ε
η

ε 00

1=+ e
E

e  

Taking 0→ε , we have ( ) 00 =+e         (9) 
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Taking +→ 0t in equation (8), we get 

 ( ) 00 1
0 =+=+ c

E
e

τ
 

E
c 0
1

τ−=⇒         (Using (9)) 

Using this value in equation (8), we get  

( ) 







−=−=

−−
**

1000 t
t

t
t

e
E

e
EE

te
τττ

      (10) 

This is the required strain cycle. 
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We observe that under finite load, the model initially deforms slowly. So, for small 

value of t, i.e., ( ) 0,0 =→ tet  . 

For large value of t, i.e., ∞→t ,  

( ) ∞== e
E

te 0τ
 , i.e., under finite stress, there is finite strain. 

This is the behaviour of an elastic solid. 

Sine element deform slowly, so Kelvin element has delayed elasticity. 

Comparing with the definition of creep compliance 

( ) ( )tJte 0τ=  

So, ( ) 









−=

−
*

1
1 t

t
e

E
tJ          

Relaxation Phase 

Consider the strain cycle is 

( ) ( )tHete 0=  
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



<
>

=
0,0

0,0

t

te
         

It is not possible since Kelvin model does not attain finite strain instantaneously. 

Suppose at 01 >= tt  

( ) 1ete =  and   













−=

−
*

1

10
1

t
t

e
E

e
τ

  (Using (10))   (11) 

From equation (6), for t > 0 we get 

( ) ( )

( ) valuefiniteee
E

Et

Eete
t

t
t

e

t
t

t
t

=













−=














−=⇒

=⇒=⇒=+

−−
*

1
*

1

11

0

0
0

11**
1

τττ

τητ
η
τ

 

We observe that ( )tτ is independent of t. 

The relaxation in Kelvin element is incomplete, since there is a stress forever.  

Relaxation Modulus: 

We have 
t

e
Ee

∂
∂+= ητ  

If ( ) ( )tHete 0=  

Then  

( ) ( )( ) ( ) ( )[ ]

( ) ( ) ( )tYttEH
e

ttEHetHe
t

tHEe

=+=⇒

+=
∂
∂+=

ηδτ

ηδητ

0

000
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3.8 Summary 

We have studied about elastic and viscoelastic materials. Constitutive equations of 

two viscoelastic models namely Maxwell and Kelvin have been derived. We have 

also discussed about creep and relaxation phenomena.  

3.9 Keywords: Elastic material, Viscoelastic material, dashpot, Kelvin Model, 

Maxwell Model, creep and relaxation phase.  

3.10 Self –assessment Questions 

Q 1. Define elastic and viscoelastic materials along with example. 

Q 2. Describe the Kelvin solid model of viscoelasticity. Find its constitutive equation 

and hence discuss the creep phase and relaxation phase.  

Q 3. Describe the Maxwell solid model of viscoelasticity. Find its constitutive 

equation and hence discuss the creep phase and relaxation phase.  

3.11 Suggested Readings 

1. Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall, New Delhi. 

2. W. Flugge, Viscoelasticity, Springer Verlag. 

3. R.M. Christensen, Theory of Viscoelasticity- An Introduction, 2nd Edition, 

1982, Academic Press Inc., New York. 

4. D.R. Bland, The Theory of Linear Viscoelasticity, Pergamon, New York, 

1960. 
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Chapter 4 

Standard Linear Solid and Generalised Viscoelastic Models 

4.1 Objectives  

In this chapter, we shall discuss about more complicated models: Standard Linear 

Solid and Generalised Viscoelastic Models. We derive their constitutive equations. 

Further, the creep and relaxation phenomena will be explained. 

4.2 Introduction  

In Standard Linear Solid, a spring and a Kelvin model are connected in series. 

Further, there are two ways of systematically building up more complicated models: 

the Ke1vin chain and the Maxwell model. In the former, an arbitrary number of 

different Kelvin units are connected in series. In the Maxwell model, Maxwell units 

are connected in parallel.  These are respectively called, the Generalized Maxwell 

Model and Generalized Kelvin Model. 

4.3  Standard linear solid model (S.L.S.) or Three Parameter Solid 

In SLS, a spring and a Kelvin model are connected in series.  
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Suppose model is under the action of applied force P causing stress τ . Since a spring 

and a Kelvin model are connected in series, so elongation is distributed itself over the 

spring and the Kelvin model.  

If e is the total elongation, then 21 eee +=       (1) 

 where 1e  is the elongation in the spring and 2e  is the elongation for the Kelvin 

model. 

The stress-strain relation for spring is 11eE=τ      (2) 

The stress-strain relation for the Kelvin model is 2222 eeE &ητ +=    (3) 

Eliminating 1e  and 2e  from (1), (2) and (3). 

( ) ( )
( )

1
2

1

2

1
2

1

2

22221212

21221222
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
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



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E
eeE
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EE
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1
222

1
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+
+

+
=

+
+⇒

−+=






 +

ητητ

τηητ
    

eqeqp && 101 +=+⇒ ττ         (4) 

where 
21

12
1

21

21
0

21

2
1 ,,

EE

E
q

EE

EE
q

EE
p

+
=

+
=

+
= ηη

    (5) 

Equation (4) is the stress-strain relation for SLS. 
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Creep phase: 

Consider the stress cycle 

( ) ( )tHt 0ττ =  , i.e., 





<
>

=
0,0

0,
)( 0

t

t
t

τ
τ         (6) 

From equation (4) and (6), we have 

eqeq &100 0 +=+τ  

1

0

1

0

q
e

q

q

t

e τ=+
∂
∂

⇒          (7) 

which is linear differential equation in e(t). 

I.F. =  
*

2

*

21

0 1

t
tdt

t
dt

q

q

eee ==
∫∫

 

The solution will be 

.)(
*

2

*

2

1

0 constdte
q

ete t
t

t
t

+= ∫
τ

 

.)( *
2

1

0
*

2

*

2 constte
q

ete t
t

t
t

+= τ
 

*

2
1

*
2

1

0)( t
t

ect
q

te
−

+= τ
 

*

2

*

2
1

0

0
1

0

1

1

0)( t
t

t
t

ec
q

ec
q

q

q
te

−−
+=+= ττ

      (8) 

where 1c is the constant of integration. 



 

MAL-643 69 

To find 1c : 

We integrate equation (4) w.r.t. ‘t’ between ( )εε ,− , 

 ( ) ( ) ∫∫∫∫
−−−−

+=+
ε

ε

ε

ε

ε

ε

ε

ε
ττ dtteqdtteqdttpdtt )()( 101 &&  

( ) ε
ε

ε

ε

ε
ε

ε

ε
ττ −

−
−

−
++=++⇒ ∫∫∫∫ )()(00 1

0
0

0

01
0

0

0

teqdtteqdtqtpdtdt  

( ) ( )( ) ( ) ( ) ( )[ ]εεετετετ
ε

−−+=−−+⇒ ∫ eeqdtteqp 1
0

010  

( ) ( ) ( )εετετ
ε

eqdtteqp 1
0

010 +=+⇒ ∫  

( ) ( ) ( )εεετετ eqquantityfiniteqp 1010 +=+⇒  

Taking 0→ε , we have 

( ) ( )++ +×= 000 101 eqqp τ    

( ) ( )++ =⇒ 00 11 eqp τ          (9) 

and ( ) 00 ττ =+   

From equation (8), taking +→ 0t and using equation (9), 

We get ( )
1

01
1

0

00
q

p
c

q
e

ττ =+=+  









−−=−=⇒

1

01

0

0

0

0

1

01
1 1

q

qp

qqq

p
c

τττ
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As we have 1
21

2

2

2

21

2

1

01 <
+

=×
+

=
EE

EE

EEq

qp

η
η

 

Putting value of 1c  in equation (8), we get  

*

2

1

01

0

0

0

0 1)( t
t

e
q

qp

qq
te

−









−−= ττ

 























−−=⇒

−
*

2

1

01

0

0 11)( t
t

e
q

qp

q
te

τ
               (10) 

which is required strain cycle. 

1

10

1

01

0

0)0(
q

p

q

qp

q
e

ττ =×=  

0

0)(
q

e
τ=∞  

Since 
01

1

1

01 1
1

qq

p

q

qp
<⇒<  

( )∞<⇒<⇒ ee
qq

p
)0(

0

0

1

01 ττ
 

Under finite stress for small values of t, the material attains a finite strain and then it 

increases. For large values of t there is a finite deformation which is the behaviour of 

an elastic solid. Hence, SLS is also called as three parameter solid. 
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Creep compliance is given by 

( ) ( )






















−−==

∗−
2

1

01

00
11

1 t
t

e
q

qp

q
tJ

te

τ
 

Relaxation Phase 

Consider the strain cycle is 

( ) ( )tHete 0= , i.e.,  





<
>

=
0,0

0,
)( 0

t

te
te        (11) 
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From equation (4) and (11), we have  

01001 qeqp +=+ ττ &  

1

00

1

1

p

eq

pt
=+

∂
∂

⇒ ττ
  which is Linear differential equation. 

11

1

.I.F p
tdt

p ee =
∫

=  

( ) .11
0

1

0 constdtee
p

q
et p

t
p

t
+= ∫τ  

( ) 1
200

p
t

eceqt
−

+=⇒ τ        (12) 

where 2c  is the constant of integration. 

Taking +→ 0t in equation (12) and using equation (9), we get 

( ) ( )
1

01

1

1
200

0
0

p

eq

p

eq
ceq ==+=

+
+τ  









−−=−=⇒

01

1
0000

1

01
2 1

qp

q
eqeq

p

eq
c   

Putting value of 2c  in equation (12), we have 

( )




















−−=

−
1

01

1
00 11 p

t
e

qp

q
eqtτ  

which is required stress-cycle. 

Relaxation Modulus is given by 
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( )




















−−==

−
1

01

1
0

0
11)( p

t
e

qp

q
q

e

t
tY

τ
 

Now 
1

1
0

01

1
00)0(

p

q
e

qp

q
eq =×=τ  

00)( eq=∞τ  

Since 

 

1

01
00

1

1
0

01

1

1

01 1
1

p

eq
eq

p

q
q

qq

p

q

qp

<⇒<⇒

<⇒<
 

)0()( ττ <∞⇒  
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Remark: 

If we take , ∗∗ == 2
0

1
11 , t

q

q
tp  

( )



























−−=⇒

∗−

∗

∗
2

2

1

0
11

1 t
t

e
t

t

q
tJ  

and ( )



























−+=

∗−

∗

∗
111

1

2
0

t
t

e
t

t
qtY  

4.4 Generalized Maxwell Model 

In Generalized Maxwell Model, k Maxwell elements are connected in parallel.  
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Let ie  be elongation in each Maxwell element due to applied stress τ . Since 

elongation will be same in each element. So, 

eeee k ==== .........21 (say)        (1) 

The stress τ distributes itself over the k elements. 

Therefore,    ∑
=

=
k

r
r

1

ττ         (2) 

The Stress-Strain relation for rth Maxwell Model  

t

e
E

t

e
E

tt r
r

r
r

rr

∂
∂=

∂
∂

=+
∂

∂
∗

ττ
        (3) 

To obtain Stress-Strain relation for Generalized Maxwell Model, we eliminate 

kτττ ,....., 21  from equations (2) and (3). We use the method of Laplace transform. 

We denote ( )( ) ( )sftfL =  
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Taking the Laplace transform of equations (2) and (3) 

( ) ( ) ( ) ( ).....21 ssss kττττ +++=  

( ) ( )∑
=

=
k

r
r ss

1

ττ          (4) 

( ) )0(eses
t

e
L −=









∂
∂

 

( ) ( ) ( ) ( )[ ])0(0 esesE
t

s
ss r

r

r
rr −=+− ∗

τττ  

Since material in the natural state at t = 0 

( ) ( ) 000 == erτ  

( ) ( )[ ]sesE
t

ss r
r

r =











+

∗
1τ  

( ) ( )



















+
=

∗
r

rr

t
s

ses
Es

1
τ  

 Using in equation (4), we have 

( ) ( )



















+
=

∗
=
∑

r

k

r
r

t
s

ses
Es

1
1

τ  
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( ) ( )∑
=

∗ 

















+
=

k

r

r

r

t
s

E
sess

1
1

τ  

To find ( )tτ , we take the inverse Laplace transform and by using Convolution 

theorem 

( ) ( ) ( ) ( )
∫ ∑∑ ′















′∂
′∂=



















+
=

=

′−−

=
∗

− ∗
t k

r

t
tt

r

k

r

r

r tdeE
t

te

t
s

E
sesLt r

0 11
1

τ     (5) 

Creep phase: 

This is same as we calculated for single element. 

Relaxation phase: 

Consider the strain cycle is 

( ) ( )tHete 0= , i.e.,  





<
>

=
0,0

0,
)( 0

t

te
te         (6) 

From equation (3), 0>t  

0
1 0 =

∂
∂=+

∂
∂

∗ t

e
E

tt rr
r

r ττ
 

Integrating above equation 

Solution is ( ) r
t

t

r cet r =
∗

τ  
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( ) ∗
−

= rt
t

rr ectτ          (7) 

where rc is constant of integration. 

 Taking 0=t in equation (7), we get 

( ) rr c=0τ           (8) 

We integrate equation (3) w.r.t. time (t) between ( )εε ,−  

∫∫∫
−−−

∂
∂=+

∂
∂ ε

ε

ε

ε

ε

ε

ττ
dt

t

e
Edt

t
dt

t
r

r
r

rr
*

 

( ) ( ) ( ) ( )[ ]εετετετ −−=













++−− ∫∫

∈

∈−
eeEdt

t
r

r

r
rr

0
*

0

0  

But ( ) ( ) 0=−=− εετ er  

Taking 0→ε , we have 

( ) ( )++ = 00 eErrτ           (9) 

Taking +→ 0t in equation (6), we get 

 ( ) 00 ee =+  

( )
0

0
e

Er

r =⇒
+τ

   (Using (9)) 

rr Eec 0=⇒      (Using equation (8)) 

Hence equation (7) gives  

( ) ∗
−

= rt
t

rr eEet 0τ  



 

MAL-643 79 

The stress cycle for Generalized Maxwell Model 

∑∑
=

−

=

∗

==
k

r

t
t

r

k

r
r

reEett
1

0
1

)()( ττ  

Comparing with the definition of Relaxation Modulus 

( ) ( )
∑
=

−
∗

==
k

r

t
t

r
reE

e

t
tY

10

τ
 

The stress-strain relation can be written as 

( ) ( )∫ ′′−
′∂
′∂=

t

tdttY
t

te
t

0

)(τ  

4.5 Generalized Kelvin Model 

In Generalized Kelvin Model, ‘k’ Kelvin elements are connected in series under the 

applied stressτ . 

 

Since the elements are connected in series. So, elongation e  is distributed on each 

element. 

If keee ,......,, 21  are the elongation of 1st, 2nd and kth Kelvin element, then 
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∑
=

=
k

r
ree

1

          (1) 

The stress τ  will be same over each element. 

The Stress-Strain relation for rth Kelvin Model is 














+= ∗

r

r
rr

t

e
e&ητ          (2) 

To obtain Stress-Strain relation for Generalized Kelvin Model, we eliminate 

keee ,....., 21  from equations (1) and (2). We use the method of Laplace transform. 

We denote ( )( ) ( )sftfL =  

Taking the Laplace transform of equations (1) and (2) 

( ) ( )∑
=

=
k

r
r sese

1

         (3) 

( ) ( ) ( )











+−= ∗

r

r
rrr

t

se
esess )0(ητ  

But ( ) 00 =re , since material in the natural state at t = 0 

( ) ( )











+= ∗

r
rr

t
sses

1ητ  

Or ( ) ( )












+

=

∗
r

r

r

t
s

s
se

1η

τ
         (4) 

 Using equation (4) in equation (3), we have 
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( ) ( )∑
=

∗











+

=
k

r

r
r

t
s

sse
1 1

1

η
τ  

To find ( )te , we take the inverse Laplace transform and by using Convolution theorem 

( ) ( )
( )

∫ ∑ ′













′=

=

′−− ∗
t k

r

t
tt

r
tdette r

0 1

1

η
τ        (5) 

This is the required stress-strain relation for the Generalized Kelvin model. 

Creep phase 

Consider the stress cycle 

( ) ( )tHt 0ττ =  , i.e., 





<
>

=
0,0

0,
)( 0

t

t
t

τ
τ         (6) 

From equation (2), t > 0 

rr

r
r

t

e
e

η
τ0=+ ∗

&  

To integrate it,  we have         

I.F. =  
∗∗

=
∫

rr t
tdt

t ee

1

 

The solution will be 

.)( 0 constdteete rr t
t

r

t
t

r += ∫
∗∗

η
τ
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.
1

)( 0 const

t

e
ete

r

t
t

r

t
t

r
r

r +=
∗

∗
∗

η
τ

 

∗
−∗

+= rt
t

r
r

r
r ec

t
te

η
τ0)(          (7) 

where rc  is the constant of integration. 

To find rc : 

We take 0→t  

So, r
r

r
rr

r
r c

E
c

E
e +=+=+ 00)0(

τ
η

ητ
       (8) 

We integrate equation (2) w.r.t. time (t) between ( )εε ,−  

ε
η
τεε ε

r
rr quantityfiniteee 0)()()( =+−−  

Making 0→ε and 0)0(0)( =⇒=− +
rr ee ε  

Using in equation (8), we have 

r
rr

r E
cc

E
00 0

ττ −=⇒=+  

Put the value in equation (7), we obtain 














−=−=

∗∗
−−

rr t
t

r

t
t

rr
r e

E
e

EE
te 1)( 000 τττ
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Then ∑
=

−
















−=

∗k

r r

t
t

E

e
te

r

1
0

1
)( τ  

which is required strain cycle due to the stress-cycle ( ) ( )tHt 0ττ =  

Creep compliance is obtained as under: 

( ) ( )
∑
=

−














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−==
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r r
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E

ete
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Differentiate w.r.t. ‘t’,  
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=
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−


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




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

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
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−×−=

∗∗ k

r r

t
t
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r rr

t
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rr e

tE

e

dt

tdJ

11

1

η
 

The stress-strain relation can be written as 

( ) ( ) ( )∫ ′′−
′−

′=
t

tdttJ
ttd

d
tte

0

)( τ        (9) 

Example:- 

A viscoelastic material is represented by a chain of 3 Kelvin elements. 

Let q be reference of stress and T be reference time. 

Assume that the following viscoelastic co-officiants hold for the Kelvin elements. 

Ist element qTqqq 2,2 10 ==  

2nd element qTqqq 4, 10 ==  

3rd element qTqqq 5.16,5.1 10 ==  
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Find ( ) ( )sJtJ ,  

The standard stress-strain relation for a Kelvin element is 

eEeeqeq && ητ +=+= 10         (1) 

For Ist element qTqE 2,2 11 == η  

2nd element qTqE 4, 22 == η  

3rd element qTqE 5.16,5.1 33 == η  

We have ( ) ( )tHt 0ττ =  

( )
s

s 0ττ =           (2) 

By definition of creep compliance,   

( ) ( )tJte 0τ=  

( ) ( )sJse 0τ=           (3) 

For the Kelvin chain, we have 

( ) ( )∑
=

∗ 










+

=
k

r

r
r

t
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τ         (4) 

T
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t ==∗
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1
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η
 

T
E

t 4
2

2
2 ==∗ η

 

T
E

t 11
3

3
3 ==∗ η
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Using equation (2) and (3) and the values of ∗rr t,η  in equation (4), we have 
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(To find J (t), we will take the inverse Laplace Transform) 
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To find J(t), take inverse Laplace Transform and using 1
11 =




−

s
L  and  
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L −− =
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+
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4.6 Summary  

We have studied about Standard Linear Solid Model and Generalised viscoelastic 

models namely Maxwell and Kelvin. The constitutive equations of these models have 

been derived. We have also studied about creep and relaxation phenomena.  

4.7 Keywords: Standard Linear Solid, Generalised Kelvin model, Generalised 

Maxwell model, creep phase, relaxation phase 

4.8 Self-assessment Questions 

Q1. Describe the Standard Linear Solid model of viscoelasticity. Find its constitutive 

equation. Also discuss its creep phase and relaxation phase.  

Q2. Describe the Generalised Kelvin model of viscoelasticity. Find its constitutive 

equation and hence discuss the creep phase test.  

Q3. Describe the Generalised Maxwell model of viscoelasticity. Find its constitutive 

equation and hence discuss the relaxation phase.  

4.9   Suggested Readings 
 

1. Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall, New Delhi. 

2. W. Flugge, Viscoelasticity, Springer Verlag. 

3. R.M. Christensen, Theory of Viscoelasticity- An Introduction, 2nd Edition, 

1982, Academic Press Inc., New York. 

4. D.R. Bland, The Theory of Linear Viscoelasticity, Pergamon, New York, 

1960. 
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Chapter 5 

Correspondence Principle of linear viscoelasticity and its applications 

5.1 Objectives 

In this chapter, we shall discuss about Correspondence Principle of linear 

viscoelasticity and its applications to the deformation of a viscoelastic thick-walled 

tube in plane strain. 

5.2 Introduction 

In this chapter, some simple stress problems involving a viscoelastic material have 

been considered and solved. The general problem is the same for elastic and 

viscoelastic structures. In both cases, the three basic sets of equations must be 

satisfied: the equilibrium equations, the kinematic relations, and the constitutive 

equations of the material. The first two of these are common to elastic and 

viscoelastic materials. The only difference between elastic and viscoelastic materials 

is in the constitutive equations of the material.  For viscoelastic materials, Hooke’s 

law is to be replaced by another equation. Thus the solution of viscoelastic problem 

can be obtained with the help of corresponding solution of elastic problem. If the 

solution of an elastic problem is known, the Laplace transformed solution of  the 

corresponding viscoelastic problem can be obtained on replacing elastic moduli µ  

and K  by the corresponding transformed moduli µ  and K  respectively and the 

actual load by their Laplace transform. This is known as Correspondence Principle of 

linear viscoelasticity.  
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5.3   Correspondence Principle of linear viscoelasticity  

We know that the stress-strain relation for 1-D viscoelastic material is 

∑∑
∂
∂=

∂
∂

r
r

r

r
r

r

r

r
t

e
q

t
p

τ
 

Or ( ) ( )eQP =τ  

where ∑∑ ∂
∂=

∂
∂=

r
r

r

r
r

r

r

r t

e
qQ

t
pP ,

τ
 

Generalization: Consider a stress problem, let a body consisting of volume V 

bounded by the surface S. 

 

The basic equations are 

1. Equations of Equilibrium: 0, =+ ijij Fτ      (1) 

2. Kinematic Relations: ( )ijjiij uue ,,2

1 +=      (2) 

3. Boundary conditions are:  

Su

SfT

ii

ijij
n

i

onor

onˆ

φ
ητ
=

==
       (3) 
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where iif φand  are prescribed functions. 

4. Constitutive equations: For an elastic material ijijij eµϑλδτ 2+=   (4) 

We define, Deviatoric strain  ijε  and Deviatoric stress ijp  where  

ijijij e ϑδε
3

1−=   ( iie=ϑ )      (5) 

ijijijp θδτ
3

1−=   ( )iiτθ =       (6) 

Using equation (5) and (6) in equation (4), we get 






 ++=+ ijijijijijp δϑεµϑλδδθ
3

1
2

3

1
 

ijijijijijij Kp εµϑδεµϑδµλδθ 22
3

2

3

1 +=+




 +=+⇒     (7) 

where µλ
3

2+=Κ = Bulk Modulus 

Taking i = j in equation (4), we have  

( ) ϑµλϑµλµϑλδτ 






 +=+=+=
3

2
3232 ijijij e  

ϑθ K3=⇒           (8) 

Using (8) in equation (7), we have 

( ) ijijijij KKp µεϑδϑδ 23
3

1 +=+  

ijijp µε2=⇒           (9) 
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Equation (1)-(3) and (8)-(9) hold for an elastic material. For a viscoelastic material, 

equation (1) holds for a continuous material elastic or viscoelastic. 

We write the viscoelastic stress-strain relation for 3-D viscoelastic material: 

∑∑

∑∑

∂
∂′′=

∂
∂′′

∂
∂

′=
∂

∂
′

r
r

r

r
r

r

r

r

r
r

ij
r

r
r

r

ij
r

r

t
q

t
p

t
q

t

p
p

ϑθ

ε

and

      (10) 

( ) ( )

( ) ( )ϑθ

ε

QP

QpP ijij

′′=′′

′=′

and

       (11) 

where  

∑∑

∑∑

′′

=

′′

=

′

=

′

=

∂
∂′′=′′

∂
∂′′=′′

∂
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∂′=′
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r
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r
r

r

r
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r
r

r

r

m

r
r

r

r

t
qQ

t
pP

t
qQ

t
pP

11

11

,and

,

 

Remark: Equation (9) and (10a) is for deviatoric changes of an elastic and 

viscoelastic material and equation (8) and (10b) is for the dilatational changes of an 

elastic and viscoelastic material respectively. 

Correspondence Principle: 

Consider a continuous material under constant load. For an elastic body, nothing 

depends upon time. But for a viscoelastic material, iiijij f φϑθεφ ,,,,,   depends upon 

time. 

We use the method of Laplace transforms. 
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We take L.T. of equations (1), (3) and (11), we obtain 

 0, =+ ijij Fτ      in   V       (12) 

Su

Sf

ii

ijij

onor

on

φ

ητ

=

=
       (13) 

( ) ( )

( ) ( )ϑθ

ε

sQsP

sQpsP ijij

′′=′′

′=′

and

       (14) 

where  

( ) ( )

( ) ( ) ∑∑

∑∑
′′
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′
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′′=′′′′=′′

′=′′=′
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r

r
r

n

r

r
r

m

r

r
r

sqsQspsP

sqsQspsP

11

11

,and

,

    (15) 

Assuming that there is no deformation at t=0. 

We define Transform shear modulus ∗µ and Transform bulk modulus 
∗K  by the 

relation 

( ) ( )
( )

( ) ( )
( )sP

sQ
sK

sP

sQ
s

′′
′′

=

′
′

=

∗

∗

3and

2µ
        (16) 

Then equation (14) becomes 

( )

( )ϑθ

εµ

sK

sp ijij

∗

∗

=

=

3and

2

        (17) 

Equations (12), (13) and (17) hold for a viscoelastic material. 
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On comparing the two sets of equations for an elastic material and viscoelastic 

material, we observe that the quantities, iiijij fp φϑθε ,,,,,   are replaced by 

iiijij fp φϑθε ,,,,,   and µ  and K  are replaced by ∗µ and ∗K  respectively. 

Hence, we have the following Correspondence Principle of Linear Viscoelasticity: 

“If we know the solution of any problem for an elastic material, then the Transform of 

solution of corresponding viscoelastic material can be known by replacing the 

quantities iiijij fp φϑθε ,,,,,   by their Laplace transforms and the elastic constants 

µ and K  are replaced by ∗µ and ∗K  respectively.” 

5.4 Applications of Correspondence Principle 

Problem – I: Deformation of long thick walled tube due to internal pressure 1τ  and 

external pressure 2τ . 

Problem – II: Deformation of thick walled tube under internal pressure 1τ  and tube 

is in contact with a rigid medium. 

Problem – I 

Consider a long thick walled tube of inner radius ‘a’ and external radius ‘b’ under no 

external forces. 

Let there be internal pressure 1τ   and internal pressure  2τ   on the tube. 
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Since the tube is ring, it is plane strain problem. 

Let the axis of the tube is taken along z-axis. We choose the 21xx   plane. 

Choosing the cylindrical co-ordinate system ( )zr ,,θ . 

Due to axial symmetry, 0≡
∂
∂
θ

 

Therefore   

( ) 0,0, === zrr uuruu θ          (1) 

Therefore equation of equilibrium gives 

 ( ) 02 =+∇++ Fudivugrad µµλ  

( ) 02 =−+ curlcurludivugrad µµλ  

By equation (1) 0=curlcurlu  
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So, equation of equilibrium gives 0=udivgrad  

0=






 +⇒
r

u

dr

du

dr

d
 

Integrating, we have A
r

u

dr

du
2=







 +   (A is constant) 

BArruAru
dr

du
r +=⇒=







 +⇒ 22  

where B is constant of integration. 

r

B
Aru +=⇒          (2) 

Boundary conditions are: 

br

ar

rr

rr

=−=
=−=

when,and

when,

2

1

ττ
ττ

       (3) 

From equation (2), the stresses are given by  

ijijij eµϑλδτ 2+=  








 −+=
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∂+




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 +=
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r

u

dr
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eudiv rrrr

µλ

µλ

µλτ

 

( ) 






−++=⇒
2

22
r

B
Arr µµλτ        (4) 

and θθθθ µλτ eudiv 2+=  
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( ) 






++=⇒
2

22
r

B
A µµλτ θθ        (5) 

and ( )θθττστ += rrzz  

0=θτ r  

From equations (3) and (4), solving for A, B 
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We get, 
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µ
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µ
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Using in equations (2), (4) and (5), the elastic solution is 

( )
( )

( ) rab
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2
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rr

−
−

+
−
−

=

−
−

−
−
−

=⇒

τττττ

τττττ

θθ

      (7) 
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To obtain the viscoelastic solution, we apply the correspondence principle which 

states that the quantities 1τ , 2τ , u , rrτ , θθτ  must be replaced by their Laplace 

transform and the elastic constants µ  and K  by 

( ) ( )
( ) ( ) ( )

( )sP

sQ
sK

sP

sQ
s

′′
′′

=
′
′

= ∗∗

3
and

2
µ . 

We also assume that there is step loading. 

Therefore  

( ) ( ) ( ) ( )tHttHt 2211 , ττττ ==    where H(t) is unit step function. 

Taking the Laplace transform, we have 

ss
2

2
1

1 ,
ττττ ==         (8) 

Also equation (7) is free from elastic constants. Therefore stresses do not change for 

the viscoelastic material. Hence, we calculate only u. 

From equation (6) and (8), the Laplace transform of viscoelastic solution is 
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We now choose the specific material to obtain the values of QPQP ′′′′′′ ,,, . We 

consider two cases. 

Case I: 

We assume that the material is elastic in dilatation and Kelvin behaviour in distortion. 

Since material is elastic in dilatation so, ϑθ K3=  
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L.T. gives us, ϑθ K3=  

On comparing with ( ) ( )ϑθ sQsP ′′=′′ , we get 

 ( ) ( ) KsQsP 3,1 =′′=′′  

Since material is Kelvin behaviour in distortion eqeq &10 +=τ  

( ) ( )
( ) ( ) sqqsQsP

t
qqtQtP
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∂+=′=′⇒

       (11) 

Using equations (10) and (11) in equations (9), we get  
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The solution is in Laplace transform domain.  

Taking Inverse Laplace transform and using( ) 














+
−=

+ assaass

1111
, we get 

( ) ( )
( )

( ) r
q

q
s

sab

ab

q

q

q
r

q

Kq
s

sab

ba

Kq

q

q
su

1111
6

11

6

31

1

022

22
21

0

1

1

1

022

2
2

2
1

0

1

1


















+
−













−

−
×+



















+
+

−












−

−
+

×=
ττττ

 

Taking Inverse L.T., we obtain 
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(12) 

is required displacement for Kelvin model. 
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Case II: 

We assume that the material is elastic in dilatation and Maxwell viscoelastic 

behaviour in distortion. 

Since material is elastic in dilatation so, ϑθ K3=  

L.T. gives us, ϑθ K3=  

On comparing with ( ) ( )ϑθ sQsP ′′=′′ , we get 

 ( ) ( ) KsQsP 3,1 =′′=′′        (13) 

Since material is Maxwell behaviour in distortion, the stress-strain relation is 

 eqp && 11 =+ ττ  

Taking L.T., we obtain 

( ) ( )sesqsp 111 =+ τ  

Comparing with ( ) ( )esQsP ′=′ τ  , we get  

( ) ( ) ( )sqsQspsP 11),1( =′+=′       (14) 

We also assume that there is step loading. 

Therefore  

 

( ) ( ) ( ) ( )tHttHt 2211 , ττττ ==  

Taking the Laplace transform, we have  

ss
2

2
1

1 ,
ττττ ==         (15) 

Using in equation (9) 
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Taking Inverse L.T., we obtain 
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is required solution. 

Particular case: 

When the outer surface of the tube is free from external pressure. 

Take 02 =τ  

Problem-II  

Consider the thick walled tube subjected to the internal pressure and 1τ  outer surface 

is n contact with rigid medium. Like last article, we have 

( ) 0,0, === zrr uuruu θ        (1) 

Boundary conditions are: 

bruu

ar

r

rr

===
=−=

when,0and

when,ττ
       (2) 

Therefore equation of equilibrium gives 

 ( ) 02 =+∇++ Fudivugrad µµλ  

( ) 02 =−+ curlcurludivugrad µµλ  

By equation (1),  0=curlcurlu  
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So, equation of equilibrium gives 

 0=udivgrad  

0=






 +⇒
r

u

dr

du

dr

d
 

Integrating, we have 
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dr

du
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



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 +   (A is constant) 
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where B is constant of integration. 

r

B
Aru +=⇒          (3) 

The stresses, corresponding to equation (3) are 
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        (4) 

From equations (2), (3) and (4), solving for A, B we get 
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We get, 
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Using in equations (3) and (4), the elastic solution is 
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To obtain the viscoelastic solution, we apply the correspondence principle. 

The Laplace transform of viscoelastic solution is 
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We also assume that there is step loading. 

Therefore  

( ) ( )tHt ττ =  

Taking the Laplace transform, we have 

( )
s

s
ττ =           (9) 
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( ) ( )
( ) ( ) ( )

( )sP

sQ
sK

sP
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s
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=
′
′

= ∗∗

3
and

2
µ . 

We assume that the material is elastic in dilatation and Maxwell viscoelastic 

behaviour in distortion. (Similarly we can discuss about elastic in dilatation and 

Kelvin viscoelastic behaviour in distortion.) 

Since material is elastic in dilatation so, ϑθ K3=  

L.T. gives us, ϑθ K3=  

On comparing with ( ) ( ) ϑθ sQsP ′′=′′ , we get  

( ) ( ) KKKsQsP =⇒=′′=′′ ∗3,1  

Since material is Maxwell behaviour in distortion, the stress-strain relation is 

 eqp && 11 =+ ττ  

Taking L.T., we obtain 

 ( ) ( )sesqsp 111 =+ τ  

Comparing with ( ) ( )esQsP ′=′ τ , we get,  

( ) ( ) sqsQspsP 11),1( =′+=′        

Using these values in equations (7) and (8), we get  

( ) ( ) 







++=








+−

+
+

=
2

2

11

2
1 3

16where
6

)1(3

a

b
qKp

r

b
r

sKs

sp
su α

α
τ
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( )

( )
( )

( )


















+








 −
−−=










+







++












+







++

−=

sK

q
ra

b

s
s

sp

sq

r

b
K

sp

sq
b

a
Kas

a
s

rr

rr

α
ττ

ττ

6

11
3

1

123

1

123

122
2

1

1
2

2

1

12
2

2

2

 

Taking Inverse L.T., we obtain 

( ) 







+−
















+−=

−

r

b
re

q

a

b

K
tu

t
K 26

1
2

23
11

2
α

α
τ

 

( )





















 −−−=
− t

K

rr e
q

ra
bt α

α
ττ

6
1

22
2 11

31  

( )





















 +−−=
− t

K

e
q

ra
bt αθθ α

ττ
6

1
22

2 11
31  

which is required solution. 

Problem III  

Outer surface is in contact with rigid medium and inner surface is acted on by 

pressure 1τ . 

Boundary conditions are: 

0=u   at    external 

 1ττ −=rr   at inner boundary. 
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5.5 Summary  

We have studied about the correspondence principle of linear viscoelasticity and its 

applications to two-dimensional problems. 

5.6 Keywords: Viscoelasticity, Correspondence principle, thick walled tube, 

internal pressure, External pressure, axial symmetry, elastic material.  

5.7 Self-assessment Questions 

Q 1. State and prove general correspondence principle of viscoelasticity. 

Q 2.  Describe deformation of long thick walled tube due to internal pressure 1τ   and 

external pressure  2τ . 

Q 3. Describe deformation of thick walled tube under internal pressure 1τ   and tube is 

in contact with a rigid medium. 

Q 4. Describe deformation of thick walled tube when outer surface is in contact with 

rigid medium and inner surface is acted on by pressure 1τ  for the material elastic in 

dilatation and Kelvin viscoelastic behaviour in distortion. 

Q 5. Describe deformation of thick walled tube when outer surface is in contact with 

rigid medium and inner surface is acted on by pressure 1τ  for the material elastic in 

dilatation and Standard Linear Solid viscoelastic behaviour in distortion. 

5.8  Suggested Readings 
 

1. Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall, New Delhi. 

2. W. Flugge, Viscoelasticity, Springer Verlag. 
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3. R.M. Christensen, Theory of Viscoelasticity- An Introduction, 2nd Edition, 

1982, Academic Press Inc., New York. 

4. D.R. Bland, The Theory of Linear Viscoelasticity, Pergamon, New York, 

1960. 
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Chapter-6 

Fundamental Equations of Elastodynamics and Seismic Waves 

6.1 Objectives  

In this chapter, we shall discuss about Field equations of Elastodynamics, propagation 

of waves in an isotropic elastic solid medium, waves of dilatation and distortion. We 

also discuss about elastic and plane elastic waves. 

6.2 Introduction 

The differential equations of motion of an elastic solid can be obtained at once from 

the equations of equilibrium [ )3,2,1,(,0, ==+ jiFijjiτ ] by invoking the principle 

of D’ Alembert and adding the forces of inertia to the components of the body force. 

If ),,( 321 xxxρ  is the density of the medium, then the components of the force of 

inertia acting on the mass contained within the volume element τd  are τρ d
t

ui
2

2

∂
∂

− .  

Hence adding to the components iF  of the body force F in equilibrium equations, the 

components of the force of inertia per unit volume gives the system of equations 

iijji uF &&ρτ =+,  

where ,
2

2

i
i u

t

u
&&≡

∂
∂

 

which are known as equations of motion. 

6.3 Field equations of Elastodynamics  

We know that 
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I Equations of Motion:  

( )ji
j

jji

ji

iijji

x

uf

ττ

τ

ρρτ

∂
∂=

=+

,

,

tensorstressis

where

&&

 

termInertiaknownis

onAcceleratiis

massunitperforceBodyare

2

2

i

i
i

i

u
t

u
u

f

&&

&&

ρ
∂
∂

=  

II Constitutive equations (Generalised Hook’s Law): 

For isotropic homogenous elastic medium, the stress-strain relations are given by   

,2 ijijij eµλϑδτ +=  

where µλ,  are Lame’s Constants  

332211 eeeekk ++==ϑ  is known as Dilatation or Cubical dilatation. 

TensorStressis

TensorStrainis

ij

ije

τ
 

III Strain-displacement relations: 

( )ijjiij uue ,,2

1 +=  

IV Boundary conditions 

Either displacements or tractions (stresses) are prescribed on boundary, i.e., 

 iiu φ=   or  iit ψ=   are known. 
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In case of mixed BVP, the displacements are given on some portion and stresses are 

given on remaining portion, i.e. 

 

 

On boundary 

Tu SSS +=  

6.4 Waves 

Wave is a disturbance travelling through a medium without producing a permanent 

displacement to the medium such that the energy is propagated to distinct points. 

Waves in air, in liquid, in the light, in the string, in the electric cable are very 

common.  Examples are: (i) when a pebble is dropped into a pond, water waves travel 

radially outwards; (ii) when a piano is played, the wires vibrate and sound waves 

spread through the room. Also the conversation we make is carried by sound waves; 

(iii) the objects we see are made visible by light waves. 

Definition: A wave may be defined as a disturbance that propagates with a constant 

velocity without change of shape. 
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6.5 Field equations of Elastic waves 

Equations of motion are: 

iijji uf &&ρρτ =+,           (1) 

Stress-strain relations are 

( )ijjiijji uu ,, ++= µλϑδτ         (2) 

where λ , µ are elastic constants. 

Then, using (2) in (1), we get  

( ) iiijjjjiijij ufuu &&ρρµϑλδ =+++ ,,  

( ) iiiii ufu &&ρρϑµλϑ =++∇+⇒ ,
2

,  

( ) iiii ufu &&ρρµϑµλ =+∇++⇒ 2
,  

These are known as Navier’s equations of motion. These are the 3 scalar equations. 

These are the displacement equations of motion. 

Navier’s equations of motion in Vector form:- 

If  iu  are the displacement components, then 

 iieuu
rr =  

where  ie
r

  are the unit vectors. 

So we have 

( ) iiiiiiii uefeuee &&
rrrr ρρµϑµλ =+∇++ 2

,  

( ) ufugrad &&r
rr ρρµϑµλ =+∇++⇒ 2        (3) 
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These are the Navier’s equation of motion in vector form. 

Since udiv
r=ϑ , then 

 ( ) ufuudivgrad &&r
rrr ρρµµλ =+∇++ 2  

Also  

ucurlcurludivgradu
rrr −=∇2

 

Then above equation becomes 

( ) ufucurlcurludivgrad &&r
rrr ρρµµλ =+−+ 2  

or 

( ) ufuu &&r
rrr ρρµµλ =+×∇×∇−∇∇+ .2  

These are the system of coupled partial differential equations for displacement vector. 

6.6  Waves in an isotropic elastic solid medium: 

In the absence of body force, the equations of motion (3) become 

( ) uugrad &&rr ρµϑµλ =∇++ 2          (4) 

Taking divergence of both sides, we obtain 

( ) ( ) ( )udiv
t

udivgraddiv
rr

2

2
2

∂
∂=∇++ ρµϑµλ  

( ) ( ) ( )udiv
t

udiv
rr

2

2
22

∂
∂=∇+∇+⇒ ρµϑµλ  

( )
2

2
22

t∂
∂=∇+∇+⇒

ϑρϑµϑµλ  
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( ) ϑρϑµλ &&=∇+⇒ 22  

( )
2

2
22

t∂
∂=∇+⇒

ϑρϑµλ  

2

2
2

2 t∂
∂









+
=∇⇒

ϑ
µλ

ρϑ  

2

2

2
2 1

t∂
∂=∇⇒

ϑ
α

ϑ          (5) 

ρ
µλα 2

where

2 +=
 

Since 

3

2µλ +=K  

ρ

µ

ρ
µλα 3

4
22

+
=+=⇒

K
        (6) 

From (5), ϑ=udiv
r

 satisfies 3D (scalar) wave equation with velocity .α  

Next, take curl of both sides of equation (4), we obtain  

( ) ( ) ucurlucurlgradcurl &&rr ρµϑµλ =∇++ 2  

( ) ( )ucurl
t

ucurl
rr

2

2
2

∂
∂=∇⇒ ρµ  
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Let us define 

2

2
2

2

2
2

t

t

uucurl

∂
Ω∂=Ω∇⇒

∂
Ω∂=Ω∇⇒

×∇==Ω

r
r

r
r

rrr

µ
ρ

ρµ  

2

2

2
2 1

t∂
Ω∂=Ω∇⇒

r
r

β
 ,        (7) 

ρ
µβ =2where  

Equation (7) is a vector wave equation with velocity β. 

Equation (5) shows that dilatational disturbance ϑ may be transmitted through an 

elastic medium with velocity α. And equation (7) shows that a rotational disturbance 

may be transmitted through an elastic medium with velocity β. 

We therefore, conclude that the disturbance in an infinite homogeneous isotropic, 

elastic medium can be propagated in the form of two types of waves: 

1. Dilatational waves with velocity of propagation α. 

2. Rotational waves with velocity of propagation β. 

If µλ = (Poisson’s case) 

Then 
ρ
µβ

ρ
µα == 22 ,

3
 

βαβα >⇒=⇒ 3  

Therefore Dilatation waves moves faster than rotational waves. 



 

MAL-643 113 

Therefore, dilatational waves arrive first while rotational waves arrive after that on a 

seismogram. For this reason, dilatational waves are also called primary waves and 

rotational waves are called secondary waves. 

6.7 Seismic wave potentials: 

The displacement u
r

 is also expressed in terms of P-wave scalar potential φ  and S-

wave vector potential ψr , using the Helmholtz’s decomposition theorem, 

0, =+∇= ψψφ rrr
divcurlu  

in equation of motion, we can get 

 
2

2

2
2 1

t∂
∂=∇ φ

α
φ       for P-wave 

2

2

2
2 1

t∂
∂=∇ ψ

β
ψ

r
r

     for S-wave. 

Dilatational waves are also called irrotational waves or P-waves.  

Since 0=ψrdiv  , it follows that a rotational wave is free of expansion or 

compression of volume. For this reason, the rotational wave is also called 

equivoluminal or dilatationless or secondary waves or S-wave. 

Remark 1: The dilatational wave (ϑ ≠ 0) causes a change in volume of the material 

elements in the body. Rotational wave (when 0≠ψr ) produces a change in shape of 

the material element without changes in the volume of material elements. 

Remark 2: Rotational waves are also referred as shear waves or a wave of distortion. 
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6.8 Plane Waves 

A geometric surface of all points in space over which the phase of a wave is constant 

is called a wavefronts. Wavefronts can have many shapes. For example, wavefronts 

can be planes or spheres or cylinders. A line normal to the wave fronts, indicating the 

direction of motion of wave, is called a ray. If the waves are propagated in a single 

direction, the waves are called plane waves, and the wavefronts for plane waves are 

parallel planes with normal along the direction of propagation of the wave. Thus, a 

plane wave is a solution of the wave equation in which the disturbance/displacement 

varies only in the direction of wave propagation and is constant in all the directions 

orthogonal to propagation direction. The rays for plane waves are parallel straight 

lines. 

6.9 Propagation of Plane elastic waves: 

In the absence of body forces, vector equation of motion is  

( ) ( ) ( ) ( )

( ) ( ) ( ) uuu

uuu

&&rrr

&&rrr

=×∇×∇−∇∇+
⇒

=×∇×∇−∇∇+

ρ
µ

ρ
µλ

ρµµλ

.
2

.2

 

( ) ( ) uuu &&rrr =×∇×∇−∇∇⇒ 22 . βα        (1) 

A solution of the equations of motion representing plane waves propagating in the 

direction 

iielp
rr =   with velocity c, is of the form   
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( )
( )

( ) ( )

upu

eupeueupeu

upuleue
x

u
eu

ulu

ucu

ucu

ctxluu

exRctRpuu

iiiiiiii

iijjjij
j

i
ji

ijji

ii

ii

jjii

ii

′=∇⇒

′=∇⇒′=∇⇒

′=′==
∂
∂

=∇

′=
′′=

′−=

−=
=−=

rrr

rrrrrr

rrrr

&&

&

rrrrrr

,

,

2

,.

 

So gradient of a vector is dydic (2nd order tensor). 

and 

 upuupu ′×=×∇′=∇ rrrrrr
,..  

( ) ( )
( ) ( )uppu

uppu

′′=∇∇
′′××=×∇×∇

rrrr

rrrr

..
 

Inserting these values in (1), we get 

( ) ( ) ucuppupp ′′=′′××−′′ rrrrrrr 222 . βα       (2) 

But ( ) ( ) ( ) ( ) uuppuppuppupp ′′−′′=′′−′′=′′×× rrrrrrrrrrrrr
...  

Put this in (2), we get 

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) 0.

or

..

2222

222

=′′××−−′′−

′′××−′′=′′××−′′

uppcuppc

uppuppcuppupp

rrrrrr

rrrrrrrrrrrr

βα

βα
     (3) 

( ) 0andeither =′′××=⇒ uppc
rrrα  

( )upc ′′×=⇒
rr

andα   is arbitrary. 



 

MAL-643 116 

Or  

( ) 0., =′′= upc
rrβ  

( ) 0, =×=⇒ upc
rrα  

up
rr

and⇒   are parallel.  

and 

 ( ) 0., == upc
rrβ  

up
rr

and⇒   are perpendicular (S-waves). 

 

Therefore, for P-waves, the displacement vector u
r

  is parallel to the direction of 

propagation p
r

, i.e., P-waves are longitudinal waves. 

Similarly for S-waves, the displacement vector u
r

  is perpendicular to the direction of 

propagation p
r

, i.e., S-waves are transverse waves. 

6.10 P, SV and SH waves of Seismology: 

Let vertical plane through the direction of propagation is 31xx -plane. 
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The displacement vector for S-waves can be decomposed into two components, one in 

the 31xx -plane known as SV-components and the other in the horizontal direction 

known as SV-components. 

Here SV is vertically polarised components and SH is horizontal polarised 

components. 

For P-waves, displacement is in the direction of propagation. 

For SV-waves, displacement is perpendicular to the direction of propagation but in 

the vertical plane. 

For SH-waves, displacement is in a horizontal direction perpendicular to the direction 

of propagation. 

6.11 Wave propagation in 2-dimensions:  

In 2-D motion, the motion is same in all planes parallel to a given plane. Let us take 

this plane as xz-plane.  
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Then 0≡
∂
∂
y

  

The equations of motion are  

( ) iii uu &&ρµϑµλ =∇++ 2
,         (1) 

Let ( )wvuui ,,=  

For i = 1, ( ) uu
x

&&ρµϑµλ =∇+
∂
∂+ 2        (2) 

For i = 2, ( ) vvvv
y

&&&& ρµρµϑµλ =∇⇒=∇+
∂
∂+ 22     (3) 

For i = 3, ( ) ww
z

&&ρµϑµλ =∇+
∂
∂+ 2        (4) 

where  

z

w

x

u

∂
∂+

∂
∂=ϑ            (5) 

and  

2

2

2

2
2

zx ∂
∂+

∂
∂≡∇  

Therefore, for 2-D motion parallel to xz-plane, equation of motion are (2), (3), (4). 

v- Motion is known as Anti-plane motion or out of plane motion and (u, w)-motion is 

known as in plane motion. 

6.12 Half-space Model or Semi-Infinite medium: 

Boundary of medium is stress free, so zzzyzx τττ ,, vanish. 
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From the stress-strain relations, ijijij eµδϑλτ 2+= , we have  










∂
∂+

∂
∂=

x

w

z

u
zx µτ          (6) 

z

v

y

w

z

v
zy ∂

∂≡








∂
∂+

∂
∂= µµτ          (7) 

( )
z

w

x

u
zz ∂

∂++
∂
∂= µλλτ 2          (8) 

(P, SV) motion is independent of SH- motion, i.e., (u, w) motion is independent of v-

motion. 
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6.13  Displacement potentials: 

By Helmholtz’s Theorem, 

0, =+∇= ψψφ rrr
divcurlu         (1) 

The equations of motion in the absence of body forces are   

( ) uuudivgrad &&rrr ρµµλ =∇++ 2  

or 

( ) uucurlcurludivgrad &&rrr ρµµλ =−+ 2       (2) 

( ) ( ) uuu &&rrr =×∇×∇−∇∇ 22 . βα        (3) 

ρ
µβ

ρ
µλα =+= 22 ,

2
 

From (1) & (3), we get 

( )( ) ( )( )














∂
∂+

∂
∂=+∇×∇×∇−+∇∇∇

2

2

2

2
22 .

t
curl

t
gradcurlcurl

ψφψφβψφα
r

rr
 

Since 

 
0

,0

=
=

φ
ψ

gradcurl

curldiv
r
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and  

( ) φφφ 2. ∇=∇∇=graddiv  

We have 

( )

0
2

2
22

2

2
22

2

2

2

2
2222

=








∂
∂−∇+









∂
∂−∇⇒










∂
∂+

∂
∂=+∇−−∇

t
curl

t
grad

t
curl

t
graddivgradcurlgrad

ψψβφφα

ψφψψβφα

r
r

r
rr

 

This equation is identically satisfied if φ  and ψr satisfy the equations 

2

2

2
2

2

2

2
2

1

1

t

t

∂
∂=∇

∂
∂=∇

ψ
β

ψ

φ
α

φ

r
r

         (4) 

Let (u, v, w) are components of displacements, then  

From (1), 

 ( ) ψφ rr
curluwvu +∇==,,   ( )[ ]321 ,, ψψψψ =r

 

yxz
w

xzy
v

zyx
u

∂
∂−

∂
∂+

∂
∂=

∂
∂−

∂
∂+

∂
∂=

∂
∂−

∂
∂+

∂
∂=⇒

12

31

23

ψψφ

ψψφ

ψψφ

 

For (P-SV) motion, 

xz
wv

zx
u

∂
∂

+
∂
∂==

∂
∂

−
∂
∂= 22 ,0,

ψφψφ
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If ,2 ψψ −= then 

xz
wv

zx
u

∂
∂−

∂
∂==

∂
∂+

∂
∂= ψφψφ

,0,       (5) 

From (4),  

2

2

2
2

2

2

2
2

1
and

1

t

t

∂
∂=∇

∂
∂=∇

ψ
β

ψ

φ
α

φ
         (6) 

Therefore, φ  represents P-waves and ψ represents SV-waves, 

The scalar potentials φ  and ψ are known as displacement potentials. 

The stresses are given by 










∂
∂+

∂
∂−

∂∂
∂=⇒










∂
∂+

∂
∂=

2

2

2

222

zxzx

x

w

z

u

zx

zx

ψψφµτ

µτ
       (7) 

and 


















∂∂
∂−

∂
∂+∇=⇒










∂∂
∂−

∂
∂+∇=

∂
∂+=

zxz

zxzz

w

zz

zz

ψφφ
µ
λµτ

ψφµφλµλϑτ

2

2

2
2

2

2

2
2

2

22

 









−=−+= 22

2

but

2

2

β
α

µ
µλ

µ
λ  

Therefore  
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





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∂
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















∂∂
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∂
∂+









∂
∂+

∂
∂









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zxzx

zxzzxzz

ψφ
β
αφ

β
αµ

ψφφφ
β
αµτ

2

2

2

2

2

2
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2

2

2

2

2

2

2

2

2

2

2

22
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0and =zyτ  

For SH-motion or V-motion:- 

0

1

0,0

2

2

2
2

==
∂
∂=









∂
∂+

∂
∂=

∂
∂=∇

==

zzzx

zy z

v

z

v

y

w

t

v
v

wu

ττ

µµτ

β
 

Note: Solution of one-dimensional wave equation:- 

[ ]εωφ +−= tmxa cos  

( )[ ]mxtiAe −=⇒ ωφ ofpartReal , where AAaaeA i arg;, === − εε  

( )[ ]mxtiAe −=⇒ ωφ  

i.e., φ   satisfies one-dimensional wave equation, where m = constant, w = frequency 

and       t = time. 

6.14  Summary 

We have studied about propagation of waves in an isotropic elastic solid medium and 

waves of dilatation and distortion. We also studied about elastic and plane elastic 

waves. 
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6.15  Keywords: Elastic wave, Plane wave, Wave propagation, P-waves, SH-wave, 

SV-wave 

6.16  Self-assessment Questions 

Q 1. What are plane waves? Derive the equation of plane waves. 

Q 2. Define elastic waves and show that two types of elastic waves propagate in an 

infinite homogenous isotropic elastic medium. 

Q 3. Describe wave motion in two dimension, in terms of displacement potential. 

Q 4. Show that two types of waves can propagate in an unbounded homogenous 

isotropic elastic medium. Justify the nomenclature used to describe these waves. 

6.17  Suggested Readings 

1. I.S. Sokolnikoff, Mathematical Theory of Elasticity, Tata McGraw Hill 

Publishing Company Ltd., New Delhi. 

2. Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall, New Delhi. 

3. S. Timoshenko and N. Goodier, Theory of Elasticity, McGraw Hill, New 

York. 

4. Martin H. Sadd., Elasticity Theory, Applications and Numerics AP (Elsevier). 

5. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th Ed., 

Dover Publications, New York. 
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Chapter 7 

Surface waves 

7.1 Objectives 

 In this chapter, we shall discuss about surface waves, types of surface waves, Elastic 

surface waves such as Rayleigh and Love waves. 

7.2 Introduction  

In an elastic body, it is possible to have another type of waves (other than body 

waves) which are propagated over the surface and penetrate only a little into the 

interior of the body. Such waves are similar to waves produced on a smooth surface of 

water when a stone is thrown into it. These types of waves are called surface waves. 

Surface waves are “tied” to the surface and diminish exponentially as they get farther 

from the surface. 

The criterion for surface waves is that the amplitude of the displacement in the 

medium dies exponentially with the increasing distance from the surface. In 

seismology, the interfaces are, in the ideal case, horizontal and so the plane of 

incidence is vertical. Activity of surface waves is restricted to the neighbourhood of 

the interface(s) or surface of the medium. Under certain conditions, such waves can 

propagate independently along the surface and interface. For surface waves, the 

disturbance is confined to a depth equal to a few wavelengths. 

Let us take xz – plane as the plane of incidence with z – axis vertically downwards. 

Let z = 0 be the surface of a semi-infinite elastic medium (Figure).  



 

MAL-643 126 

 

For a surface wave, its amplitude will be a function of z (rather than an exponential 

function) which tends to zero as z→∞. For such surface waves, the motion will be 

two – dimensional, parallel to xz – plane, so that 0=
∂
∂
y

. 

7.3 Types of Surface waves 

As the amplitude (disturbance) of Surface waves is significant only near the boundary 

and it decreases rapidly as we move away from the boundary. There are two types of 

surface waves:- 

1. Surface waves of (P, SV) type are known as Rayleigh waves named after the 

scientist Rayleigh. 

2. Surface waves of SH-type are known as LOVE waves named after AEH, 

Love. 

7.4 Rayleigh waves 

Rayleigh (1885) discussed the existence of a simplest surface wave propagating on 

the free – surface of a homogeneous isotropic elastic half – space. 
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We consider 2-D wave propagation in a homogeneous, isotropic and elastic half-space 

occupying the region z ≥ 0. 

 

Then we have, displacement components are 

xz
wv

zx
u

∂
∂−

∂
∂==

∂
∂+

∂
∂= ψφψφ

,0,  

Also φ  and  ψ satisfies the wave equations 

2

2

22

2

2

2

2

2

22

2

2

2

1

1

tzx

tzx

∂
∂=

∂
∂+

∂
∂

∂
∂=

∂
∂+

∂
∂

ψ
β

ψψ

φ
α

φφ

 

For Rayleigh wave propagating in the positive x- direction, we assume solution is of 

the form: 

( ) ( )

( ) ( ) ( )kxti

c

x
ti

ezftzx

ezftzx

−








 −

=

=

ω

ω

φ

φ

,,

or

,,
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For negative x-direction, we have solution is of the form: 

( ) ( )







 +
= c

x
ti

ezftzx
ω

ϕ ,,  

where c is the velocity of propagation of Rayleigh waves and 
c

k
ω=  is wave number 

and ω is  angular frequency. 

Put the above in the following wave equation, 

2

2

22

2

2

2 1

tzx ∂
∂=

∂
∂+

∂
∂ φ

α
φφ

 

We get 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

( )

0

01

0

1

1

22
2

2

22

2
2

2

2

2

2
2

2

2

2
22

2
2

2
22

2
2

=−⇒

=







−−⇒

=







−−⇒

−=+−⇒

−=+− −−−

fak
dz

fd

f
k

k
dz

fd

fk
dz

fd

f
dz

fd
fk

ezf
dz

fd
ekezf kxtikxtikxti

α
ω

α
ω

ω
α

ω
α

ωωω

 

( ) kazezf

c
a

k
a

±=⇒

−=−=
2

2
2

22

2
2 1or1

where

αα
ω

 

Therefore  
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( ) ( ) kazkxti eetzx ±−= ωφ ,,  

Similarly (replacing α by β), 

( ) ( ) kbzkxti eetzx ±−= ωψ ,,  

where 
2

2
2 1

β
c

b −=  

To satisfy B.C., we neglect the positive sign. 

 

Therefore, for Rayleigh waves propagating along the boundary of the half-space, z ≥ 

0, we may assume 

( ) akzkxti eAe −−= ωφ          (1) 

( ) bkzkxti eBe −−= ωψ          (2) 

where 
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2

2
1

α
c

a −=    ,     
2

2

1
β
c

b −=  

a, b are real and A & B are arbitrary constants. 

As a is real,  α<⇒ c     

and   as b is real,  β<⇒ c  

B.C., we assume that the surface of the half-space to be traction free, i.e., free 

boundary 

0==⇒ zxzz ττ   at  z = 0. 

(here zyzy ττ ,0=  is identically zero) 













∂
∂+

∂
∂−

∂∂
∂=

2

2

2

222

zxzxzx
ψψφµτ  

and 















∂∂
∂−

∂
∂+

∂
∂













−=

zxzx
zz

ψφ
β
αφ

β
αµτ

2

2

2

2

2

2

2

2

2
22       (3) 

Ist B.C., 0=zxτ  at 0=z           (4) 

0
2

2

2

2

22
=













∂
∂+

∂
∂−

∂∂
∂

⇒
zxzx

ψψφ
 at 0=z . 

Using values of ψφ and from (1) and (2), we get 

 02 =+ ςBiaA          (5) 
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2

2
2 21

where

β
ς c

b −=+=
         (6) 

From (3), 0=zzτ   at 0=z , gives 

022
2

2

2

2

2

2

2

2

2
=













∂∂
∂−

∂
∂+

∂
∂













−

zxzx

ψφ
β
αφ

β
α

 

02 =−⇒ ibBAς          (7) 

Equation (5) 
B

iaA2−=⇒ ς  

Equation (7) 
A

ibB2=⇒ ς  

Multiply these two equations, we get  

ab42 =ς  

Or    
2

2

2

22

2

2
1142

βαβ
ccc −−=














−  

On squaring, 







−








−=








−

2

2

2

24

2

2

11162
βαβ
ccc

     (8) 

Equation (8) gives velocity of propagation of Rayleigh waves, since βα , are known, 

and so velocity for Rayleigh waves ‘c’ can be calculated. 

This equation is known as Rayleigh wave equation. Equation (8) gives velocity of 

propagation of Rayleigh waves along the surface of a half-space. 
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We note that Equation (8) is independent of w, i.e. velocity c does not depend upon 

angular frequency w. Therefore, Rayleigh waves in a uniform half-space are Non-

dispersive. 

Solving (8) for c, we get  

,011616248
2

2

2

2
23 =








−−








−+−

α
β

α
β

sss      (9) 

2

2

where
β
c

s = .  

This is a cubic in s gives three solutions, either all real or one real and two complex. 

Let ( ) )10(;011616248
2

2

2

2
23 <<=








−−








−+−= sssssf

α
β

α
β

 

01)1(and0116)0(
2

2

>=<







−−= ff

α
β

 

Therefore  

( ) 0=sf  has either one or three roots satisfying the condition 10 << s . 

0166)( =−=′′ ssf   if 
3

8=s . 

If the equation ( ) 0=sf  has three roots in (0, 1), then 0)( =′′ sf  must have one root in 

(0, 1). 

Since 0)( =′′ sf  has no root in (0, 1). Therefore equation ( ) 0=sf  has one and only 

one root in (0, 1). 

In case of Poissonian earth, 
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25.0
4

1 ==σ  (since µλ = ) 

⇒
3

1
,3

2

2

==
α
β

β
α

  

Put these values in equation (9), we get 

 s = 4, 3.15, 0.85        (10) 

Only one root in (0, 1), i.e., s = 0.85 or 92.085.0
2

2
=⇒==

ββ
cc

s   (11) 

Therefore, in the Poisson’s case, the velocity of propagation of Rayleigh waves is 

approximately equal to 0.92 times the velocity of propagation of S-waves. 

We know that  

( )kxwtibkzakz eeeikA
zx

u −−−







 −−=
∂
∂+

∂
∂=

2

ςψφ
 (using (6))  (12) 

( )kxwtibkzakz ee
a

aekA
xz

w −−−







 +−=
∂
∂−

∂
∂=

ς
ψφ 2

 (using (5))  (13) 

At the surface z = 0, we get 

( )
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kxwteikAu

i
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−=





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




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2

2

2

2

2

2

2
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β

β
ςβ

ς
c

c
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−
=







 +−=




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 −  
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Therefore,  

θθ ii ekAWweikAUu )0(,)0( 00 =−=      (14) 

where ( )β

β

β
β

<>
−

== c
c

c
a

W
c

U Q0

2
1

2
)0(,

2
)0(

2

2

2

2

2

2

  (15) 

Also we find that )0()0( WU <  

Taking the real part, (14) gives 

θθ

θθ

coscos)0(

,sinsin)0(

10

10

akAWw

bkAUu

==

==
       (16) 

( ))0()0()0(,)0(

where

111 UWbkAWakAUb >>== Q
 

From (16),  

1
2
1

2
0

2
1

2
0 =+

a

w

b

u
 

which is equation of an ellipse with 1a  and 1b  as semi-major and semi-minor axes. 

Therefore, surface particles describe ellipses. Here particle motion is elliptic 

retrograde (opposite to that of wave propagation). 

7.5 Surface waves of SH-type or Love waves in a half-space model: 

We consider first the possibility of the propagation of SH type surface waves (called 

Love waves) in a homogeneous semi-infinite isotropic elastic medium occupying the 

half-space     z ≥ 0. The horizontal boundary z = 0 of the medium is assumed to be 
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stress free. Let ρ  be the density of the medium and µλ ,  Lame’s constants (as 

shown in figure). 

 

Elastic isotropic half-space 

Let the two – dimensional SH-wave motion takes place in the xz-plane. The basic 

equations for SH- wave motion are 

),,(,0,0 tzxvvwu ===      (1) 

2

2

22

2

2

2 1

t

v

z

v

x

v

∂
∂=

∂
∂+

∂
∂

β
      (2) 

ρ
µβ =2         (3) 

Let ( ) ( )kxwtiezgtzxv −= )(,,  

Then we get 
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( )

( )

2

2
2

22
2

2

2

2
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2

2

2
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2

1

where

,

0

01

1

β

β

β

c
b

ezg

gbk
dz

gd

g
c

k
dz

gd

gwggk

kbz

−=

=⇒

=−⇒

=







−−⇒

−=′′+−

±
 

Therefore  

( ) ( )kxwtikbzeetzxvv −±== ,,  

For possibility of existence of Love waves in a half-space model, we take  

( ) ( ) β<== −− ceetzxvv kxwtikbz ;,,  

B. C., 0=zyτ  at  0=z  

0=
∂
∂

⇒
z

vµ    at   0=z  

( ) ( ) 00 =⇒=−⇒ − AekbA kxwtiµ  

⇒Surface waves of SH-type or Love waves do not exist in a half-space model.  

7.6 Propagation of Love Waves 

These waves are named after AEH, Love (Surface wave of SH-type). 

Surface waves of the SH-type are observed to occur on the earth’s surface. Love 

(1911) showed that if the earth is modeled as an isotropic elastic layer of finite 
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thickness lying over a homogeneous elastic isotropic half- space (rather than 

considering earth as a purely uniform half-space) then SH type waves occur in the 

stress-free surface of a layered half-space. 

Let us consider a model consisting of a layer of uniform thickness H overlying a 

uniform half-space.  

 

We assume that the layer and the half-space are in welded contact (displacement and 

stresses at this interface are continuous) 

For layer ( )Hz ≤≤0  
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Let ( ) ( ) β<+= −− ceBeAev kxwtikbzkbz ;      (1) 
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where ckw
c

b =−= ,1
2

2

β
 

c  is velocity of propagation of Love waves and 

β   is velocity of propagation of SH-waves in uniform layer of thickness H. 

For half-space (z > H)  

2
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2

2
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∂
∂=

∂
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∂
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Let ( )
111 ;1 β<= −− ceeAv kxwtizkb       (2) 

where 12
1

2

1 ,1 β
β

<−= c
c

b  

1β - Velocity of propagation of SH-waves in half-space. 

B.C. (i) the surface z = 0 is traction free, i.e., 0=zyτ  at z = 0   

[ ]zeroyidenticallare& zzzx ττQ  

0=
∂
∂

⇒
z

vµ        at z = 0 

Using v from (1) at z = 0 

( )[ ] ( )

[ ] ( )

0

0at0
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=+−⇒

==+−⇒

=+−

−

−−

BbkAbk

zeBbkAbk
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kxtibkzbkz

ω

ω

µ

µ

 

BA =⇒           (3) 
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(ii) the displacement is continuous across the interface z = H,  

i.e.,  v = v1 at z = H 

HkbbkHbkH eABeAe 1
1

−− =+⇒        (4) 

(iii) the traction is continuous across the interface z = H,  

i.e., ( )
1zyzy ττ =     at  z = H 

Here using for layer:   zyτ    and for half-space:    ( )
1zyτ  

z

v

z

v

∂
∂=

∂
∂

⇒ 1
1µµ   at z = H 

[ ] ( )

kHbbkHbkH

kHbbkHbkH

eA
b

b
BeAe

ebAkkbBebAke

1

1

1
11

111

−−

−−

=−⇒

−=+−⇒

µ
µ

µµ
            (5) 

Solving (3), (4), (5) for three unknowns, put B = A in (4) and (5) from (3), we get  

( )

( ) kHbbkHbkH

kHbbkHbkH

eA
b

b
eeA

eAeeA

1

1

1
11

1
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−−

−−
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On dividing, we get 

( )

2
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2
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1
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2
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β

β
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β

µ
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c

c
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b
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−

−
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
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



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−=

      (6) 



 

MAL-643 140 

We assume that c < β1  and consider following cases: 

(i) If c < β1 ,   c < β 

If c < β, then L.H.S. of (6) is real & positive and R.H.S. is real & negative. 

Therefore, equation (6) has no real roots in c, i.e., c cannot be less than β. 

(ii)  If c < β1 , c > β 

if c > β,    11
2

2

2

2
−=−

ββ
c

i
c

 

equation (6) becomes 
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1

1
1tan

22

2
1

2
1

2

2

−

−
=














−⇒

β

β
µ
µ

β c

cc
kH       (7) 

This equation is known as Frequency equation or period equation or dispersion 

equation for Love waves in a layer of uniform thickness overlying a uniform half-

space. Roots of this equation in c gives velocity of propagation. 

So here c < β1  , c > β 

1ββ <<⇒ c    
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We note that for existence of Love waves, it is necessary that S-wave velocity in layer 

is less that the S-wave velocity in half-space. This gives the upper and lower bounds 

for the speed of Love waves. 

From equation (7), we note that the velocity c depends on k or λ or ω (angular 

frequency), therefore, there is dispersion, i.e., Love waves are dispersive. 






 == kc
k

ωπλ ,
2

 

7.6  Summary 

We have studied about surface waves, types of surface waves, Elastic surface waves 

such as Rayleigh and Love waves. The existence condition and nature of Rayleigh 

waves and Love waves have also been discussed. 

7.7 Keywords: Surface waves, Rayleigh waves, Love waves. 

7.8 Self-assessment Questions 

Q 1. What are Surface waves? Derive the dispersion equation for Love waves in a 

layer of uniform thickness overlying a uniform half-space. Find the condition for the 

existence of real roots of this equation. 

Q 2. Derive the equation giving the velocity of propagation of Love waves in a 

homogenous isotropic elastic layer over a homogenous isotropic half-space. 

Q 3. Describe Surface waves. Explain the Rayleigh wave propagation in a 

homogenous elastic isotropic half-space, giving wave equation, and wave velocity and 

particle motion. 

Q 4. Define P, SV and SH waves; Surface waves and plane waves. 
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Chapter-8 

Torsion of Bars 

8.1 Objectives  

In this chapter, we shall discuss about torsion of cylindrical bars, Torsional rigidity, 

Torsion and stress functions, Lines of shearing stress. We will also study about 

simple problems related to circle, ellipse and equilateral triangle. 

8.2 Introduction  

Let us consider an elastic right circular beam of length l. We choose the z-axis along 

the axis of the beam so that its ends lie in the planes z = 0 and z = l, respectively. The 

end z = 0 is fixed in the xy-plane and a couple of vector moment 3êMM =
r

 about the 

z-axis is applied at the end z = l . The lateral surface of the circular beam is stress-free 

and body forces are neglected. 

 

 

The problem is to compute the displacements, strains and stresses developed in the 

beam because of the twist (or torsion) it experiences due to the applied couple. 

(1) Equilibrium equations. 

(2) Stress-strain (displacement) relation 
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(3) Boundary conditions 

0== jijiT ντν  on lateral surface (No external load or forces act on lateral surface) 

On lateral surface, ν 3 = ν z = 0 

So boundary conditions are 

0

0

0

=+

=+

=+

yzyxzx

yyyxyx

yxyxxx

ντντ
ντντ
ντντ

 

On lateral surface, these are satisfied. 

(4) Compatibility equations 

8.3 Torsion of cylindrical bars 

Let us consider the torsion of non-circular cylinders. 

Taking z-axis along the length of bar (beam) and one end of bar is fixed in the plane    

z = 0 (xy-plane) while other end in the plane z = l   is twisted by a couple of 

magnitude M, whose moment is directed along the axis of the bar (i.e. z-axis). Thus, 

we assume that the displacement components are 

),(w,v,u yxzxzy φααα ==−=      (1)  

where ),( yxφ is some function of x & y and α is the twist per unit length of bar. 

The function ),( yxφ must be determined as to satisfy the equilibrium equations, 

boundary equations and compatibility equations. 
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( )

0

,,,

====










∂
∂+−=









∂
∂+

∂
∂=










∂
∂+=









∂
∂+

∂
∂=⇒

++=

zzxyyyxx

xz

yz

ijjiijkkij

x
y

x

w

z

u

y
x

y

w

z

v

uuu

ττττ

φµαµτ

φµαµτ

µδλτ

      (2) 

If these stresses are used in equations of equilibrium in the absence of body forces, 

0=
∂
∂+

∂
∂+

∂
∂

xzxyxx zyx
τττ         (i) 

0=
∂
∂+

∂
∂+

∂
∂

yzyyyx zyx
τττ         (ii) 

0=
∂
∂+

∂
∂+

∂
∂

zzyzzx zyx
τττ         (iii) 

We find that equations (i) & (ii) are satisfied and (iii) gives 

0

0

0

2

2

2

2

=
∂
∂+

∂
∂

⇒

=
















∂
∂+

∂
∂+

















∂
∂+−

∂
∂

⇒

=
∂
∂+

∂
∂

yx

y
x

yx
y

x

yx yzzx

φµαφµα

φµαφµα

ττ

 

So equations of equilibrium are satisfied if 

0
2

2

2

2
=

∂
∂+

∂
∂

yx

φφ
         (3) 

i.e.,  ( )yx,φ  satisfies 2-D Laplace equation 

 i.e.,  φ  is harmonic function (Torsion function). 
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Boundary conditions are: 

On lateral surface,  

0

0

0

=+

=+

=+

yzyxzx

yyyxyx

yxyxxx

ντντ
ντντ
ντντ

 

1st and  2nd B.C. are satisfied while 3rd B.C. gives  

yxyx

yx

xy
yx

y
x

x
y

νννφνφ

νφνφ

−=
∂
∂+

∂
∂

=








∂
∂++









∂
∂+−

or

0

 

yx xy
d

d νν
ν
φ −=⇒          (4) 

which is independent of z and equation (3) is also independent of z. So it becomes 2-

D problem. 

 

So 

 yx xyd ννφ −=        on C 
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0
2

2

2

2
=

∂
∂+

∂
∂

yx

φφ
  in R 

Therefore, the problem of torsion of a beam (or bar) of arbitrary cross-section R 

bounded by C can be solved in terms of a function ( )yx,φ  such that  

0
2

2

2

2
=

∂
∂+

∂
∂

yx

φφ
   in R 

and  yx xyd ννφ −=           on C. 

This problem is called Neumann’s problem. 

If F
r

is resultant force and  M
r

is resultant couple acting on base z = l, we have 

dydxx
y

x
y

y
x

x
x

dydxy
x

dydxF

R

R R

zxx

∫∫

∫∫ ∫∫





























+

∂
∂

∂
∂+
















 −
∂
∂

∂
∂=








 −
∂
∂==

φφµα

φµατ

 

(By adding  








∂
∂+

∂
∂

2

2

2

2

yx
x

φφ
  in the integrand) 

Apply Green’s theorem,  

( ) ,dydx
y

P

x

Q
QdyPdx

C R
∫ ∫∫ 









∂
∂−

∂
∂=+  

We get 
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ds
ds

dy
y

x
x

ds

dx
x

y
x

dyy
x

xdxx
y

xF

C

C

x

∫

∫
















 −
∂
∂+








+

∂
∂−=
















 −
∂
∂+








+

∂
∂−=

φφµα

φφµα
 

Direction cosines of tangent are ( )yx ′′,   

Direction cosines of normal are ( )xy ′−′,  

Therefore  

ds

dx

ds

dy
yx −== νν ,  

Then using these, we get  

 0=xF  

Similarly 0=yF  

∫∫ ==
R

zzz dydxF 0τ  

⇒Resultant force is zero. 

( ) dydxzdydxzdydxzyM
R

zy

R

zy

R

zyzzx ∫∫∫∫∫∫ −=−=−= ττττ  

( ) 00 =−=⇒ zM x     







==∫∫

R

yzy Fdydx 0τQ  

Similarly,  

 0=yM  
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( )

dydx
x

y
y

xyx

dydxyxM

R

R

zxzyz

∫∫

∫∫










∂
∂−

∂
∂++=

−=

φφµα

ττ

22

 

Hence 

dydx
x

y
y

xyxM
R
∫∫ 









∂
∂−

∂
∂++= φφµα 22  

αDM =⇒            (5) 

where dydx
x

y
y

xyxD
R
∫∫ 









∂
∂−

∂
∂++= φφµ 22  

and  D is known as torsional rigidity of beam. It depends upon µ (rigidity) & shape of 

cross-section (region). 

From (5), we have 

α∝M  

⇒  The twisting moment M is proportional to the angle α of twist per unit length. 

8.4 Stress function 

Because torsion function is harmonic in R, we can construct an analytic function 

),( ψφ i+ where ( )yx,ψ is a conjugate harmonic function of ( )yx,φ .  

i.e.,  0
2

2

2

2
=

∂
∂+

∂
∂

yx

ψψ
   in R         (6) 

By C-R equations,  

xyyx ∂
∂−=

∂
∂

∂
∂=

∂
∂ ψφψφ

,         (7) 
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But  

ds

dx

xds

dy

y

xyyxd

d
yxyx

∂
∂+

∂
∂=

∂
∂−

∂
∂=

∂
∂+

∂
∂=

ψψ

νψνψνφνφ
ν
φ

 

ds

d

d

d ψ
ν
φ =⇒          (8) 

Equation (4) becomes 

( )




 +=+=⇒

−=

22

2

1

on

yx
ds

d

ds

dx
x

ds

dy
y

ds

d

Cxy
ds

d
yx

ψ

ννψ

 

On integrating, we get 

( ) Cyx onconstant
2

1 22 ++=ψ                 (9) 

Therefore, the torsion problem of a bar of arbitrary cross-section can be solved in 

terms of a function ),( yxψ s.t.  

0
2

2

2

2
=

∂
∂+

∂
∂

yx

ψψ
   in     R  

and ( ) Cyx onconstant
2

1 22 ++=ψ   

Such type of problem is called Dirichlet’s problem. 

We introduce another function ψ (Introduced by Prandtl, L)  

( ) ( )22

2

1
, yxyx +−=ψψ        (10) 
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22
2

2

2

2
2 −∇=

∂
∂+

∂
∂=∇⇒ ψψψψ

yx
 in R 

But 02 =∇ ψ    in R      

Then 22 −=∇ ψ  in R        (11) 

constant=⇒ ψ    on  C 

Equation (11) is Poisson’s equation. 

Now  

xx
x

y
xyz ∂

∂−=








∂
∂−=









∂
∂+= ψµαψµαφµατ  

yy
y

x
yxz ∂

∂=








∂
∂+−=









∂
∂+−= ψµαψµαφµατ          [using (10)] 

As the stress components yzxz ττ &  are obtained from the function ),( yxψ ,   the 

function ),( yxψ is called stress function. 

If T
r

is stress vector, then zyzx jiT ττ ˆˆ +=
r

 is directed along the tangent to curve. Here 

normal stress is zero. 

The curve ψ = constant are called lines of shearing stress. 

If T
r

is tangential stress and ( ) ( )
22

22









∂
∂+









∂
∂=+==

yx
T zyzx

ψψµατττ
r

 

and maximum shearing stress occurs on the boundary C of the cross-section. To prove 

it, we shall use the following result: 
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1. Let a function ( )321 ,, xxxΦ  is s.t. 

(i) It is continuous and has continuous partial derivatives w.r.t. 321 ,, xxx of first and 

2nd order. 

(ii)  It is not identically equal to a constant. 

(iii) It satisfies the inequality 02 ≥Φ∇ in R. 

 Then the function Φ  attains its maximum value on the boundary C of the region R.  

Here [ ]22222
yx ψψαµτ +=  

[ ]xyyxxxx
ψψψψαµτ +=

∂
∂ 222 2  

[ ]

[ ]22222
2

2

22222
2

2

2

2

xyyyyyxyyxyy

yxyxxyxxxxxx

y

x

ψψψψψψαµτ

ψψψψψψαµτ

+++=
∂
∂

+++=
∂
∂

 

Then ( ) ( )[ ]2222222 22 xyyyyyyyxxyxyyxxxxxx ψψψψψψψψψαµτ ++++++=∇  

From equation (11), we have 

22 −=+=∇ yyxx ψψψ  in R 

Differentiate w. r. t. x, 

( )
( ) 0

0

=+

=+

yyyyxx

xyyxxx

ψψ
ψψ

   in R 

Then we get 
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[ ]
0

22
22

2222222

≥∇⇒

++=∇

τ

ψψψαµτ xyyyxx  

⇒  max. shearing stress occurs on the boundary C of region R. 

8.5 Torsion rigidity in terms of ψ :- 

Torsion rigidity is given by 

MD

DM

α

α

1

or

=

=
 

[ ]zMM =Here  

( )

( ) ( ) dydxdydxy
y

x
x

dydx
y

y
x

x

dydxyxD

RR

R

R

zxzy

∫∫∫∫

∫∫

∫∫

+








∂
∂+

∂
∂−=










∂
∂+

∂
∂−=

−=⇒

ψµψψµ

ψψµ

ττ
α

2

1

 

Using Green’s theorem, 

( )∫∫ ∫ +=








∂
∂−

∂
∂

R C

QdyPdxdydx
y

P

x

Q
 

We get 

( )

( )∫ ∫∫

∫ ∫∫

++−−=

++−−=

C R

C R

dydxxdyydx

dydxdyxdxyD

ψµψµ

ψµψψµ

2

2

 

We can take 0=ψ  on C. 
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Therefore  

∫∫=
R

dydxD ψµ2  

So, the torsional rigidity D is twice the product of shear modulus µ & the volume 

enclosed by the surface ( )yxz ,ψ=  and the plane z = 0. 

8.6 Torsion of elliptic cylinder 

Problem of torsion of a cylinder of any cross-section can be solved if we can find a 

function ψ such that 

(i) 0or
2

2

2

2
2 =

∂
∂+

∂
∂∇

yx

ψψψ    in R     (1) 

and 

(ii)  ( ) ( )22

2

1
, yxyx +=ψ    on C      (2) 

Let φ    be conjugate harmonic function of ψ     such that 

( ) ,222 ikiyxici ++=+ ψφ  

where c and k are constants. 

This is the form of analytic function derived by Saint-Venant. 

( ) 2222 2 ikixyyxici ++−=+ ψφ  

xyc22−=⇒ φ          (3) 

( ) 2222 kyxc +−=ψ         (4) 
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022 Therefore

2,2

2,2

22
2

2

2

2

2
2

2
2

2
2

2
2

=−=
∂
∂+

∂
∂

−=
∂
∂−=

∂
∂

=
∂
∂=

∂
∂

cc
yx

c
y

yc
y

c
x

xc
x

ψψ

ψψ

ψψ

 

From (2) & (4), 

( ) ( )222222

2

1
yxkyxc +=+−    on C 

22222

2

1

2

1
kycxc =







 ++






 −⇒  

1

2

1

2

1 22

2

22

2
=








 +
+








 −
⇒

ck

y

ck

x
 on C     (5) 

Let cross-section of cylinder (bar) be elliptic, then 

1
2

2

2

2
=+

b

y

a

x
         (6) 

where  

2

2
2

2

1
c

k
a

−
=          (7) 

and  
2

2
2

2

1
c

k
b

+
=         (8) 
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For an ellipse, both a and b are positive. Then from (7), we have 

2

12 <c  

Or     
2

1<c  

2

2

2

2

2

1
2

1

c

c

b

a

−

+
=  















+
=















+
−=⇒ 22

22
2,22

22

2

12

ba

ba
k

ba

ba
c       (9) 

Then (3) and (4) give 

( )
xy

ba

ba
22

22

+
−−=φ         (10) 

( )
22

22
22

22

22

2

1

ba

ba
yx

ba

ba

+
+−









+
−=ψ       (11) 
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( )

( )
22

2

22

22

22

22

2
1
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b
x

ba

ba
x

x
ba

ba
x

y
xyz

+
=









+
−−=










+
−−=









∂
∂+=

µαµα

µαφµατ
     

22

22

ba

xb
yz

+
=⇒

µατ         (12) 

( )

( ) ( ) ( )
22

2

22

22

22

22

2
1

ba

a
y

ba

ba
y

y
ba

ba
y

x
yxz

+
−=









+
−+−=










+
−−−=









∂
∂+−=

µαµα

µαφµατ
 

22

22

ba

ya
xz

+
−=⇒

µατ         (13) 

Torsional moment ( ) dydxyxMM
R

zxzyz ∫∫ −== ττ  

( )











+

+
=

+
+

=










+
+








+
=

=

∫∫∫∫

∫∫

∫∫

RR

R

R

z

dydxyadydxxb
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dydxyaxb
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dydx
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ya
y

ba
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x
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2222
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2222
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2
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 So

µα
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µαµα

 

Now 
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dxxax
a

b

dxxa
a

b
x

dxdyx

dxdyxdydxx

a

a

a
xa

a

b

R

a

a

xa
a

b

xa
a

b

∫

∫

∫ ∫

∫∫ ∫ ∫

−=

−=

=

=

−

−

−

−−

0

222

0

222

0 0

2

22

4

4

4

22

22

22

 

Put θθθ dadxax cossin =⇒=  

Therefore  

( )

44

1

!2
2

1

2

1

2

1

2

1

2

3
2

3

2

3

2

1
4

cossin4

coscossin
4

3
3

3

3

2

0
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2

0

222

ba
ba

ba

ba

dba

daaa
a

b
dydxx

R

ππ

θθθ

θθθθ

π

π

==








Γ






Γ
=

Γ








Γ






Γ
=

=

=

∫

∫∫ ∫

 

Similarly    
4

3
2 ab

dydxy
R

π=∫∫  

Using these, we get 
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( ) ( ) ( )

( )22

33

22

33
3333

22

3
2

3
2

22

4

4

4

2

44

2
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ba
M

ba

ba
baba

ba

ab
a

ba
b

ba
M

z

z

+
=⇒

+
=+

+
=









+

+
=

µαπ

µαππµα

ππµα

 

Torsional moment zMM = = ( ) dydxyx
R

zxyz∫∫ − ττ  

Therefore  

[ ]yx

xy

RR

IbIa
ba

I
ba

a
I

ba

b

dydxy
ba

a
dydxx

ba

b
M

22
22

22

2

22

2

2
22

2
2

22

2

2

22

22

+
+

=

+
+

+
=

+
+

+
= ∫∫∫∫

µα

µαµα

µαµα

 

where xI  and  yI  are M.I. of elliptic section about x and y-axes, respectively. 

We know that  

4
,

4

33 ba
I

ab
I yx

ππ ==  

Therefore, 

22

33

ba

ba
M

+
= πµα

        (14) 

Also, torsional rigidity D is given by 
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22

33

1

ba

ba
D

MD

+
=⇒

=

πµ
α

 

Stress function:- 

( ) ( ) ( )

22

22

2

2

2

2

22

22

22

22

2

2

22

22

2

2

22

22

22

22
2

22

2
2

22

2

22

22
2

22

22
2

22

22

22
22

22
22

22

22
22

2

2

12

2

1

1
2

1
1

2

1

2

1

2

1

2

1

ba

ba

b

y

a

x

ba

ba

ba

ba

b

y

ba

ba

a

x

ba

ba

ba

ba
y

ba

a
x

ba

b

ba

ba
y

ba

ba
x

ba

ba

yx
ba

ba
yx

ba

ba
yx

+
+







+

+
−=⇒

+
+








+
−








+
−=

+
+









+
−









+
−=

+
+








+

+
−−








−

+
−=⇒

+−
+

+−








+
−=+−=

ψ

ψ

ψψ

 

ψ =  Constant = Lines of shearing stress 

=+⇒
2

2

2

2

b

y

a

x
Constant 

⇒          Lines of shearing stress are family of confocal ellipses similarly to given 

ellipse. 
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Example: - Show that in the torsion of an elliptic cylinder, 

22

222
22

1

2

ba
a

e

xea
ba

ab

−=

−
+

= µατ
 

and max. shearing stress occurs on the end points of minor axes. 

Solution: - We know that 

22
zyzx τττ +=    [Using (12), (13)] 

2424
22

2

22

22

22

2

2

22

xbya
ba

ba

xb

ba

ya

+
+

=










+
+









+
−=⇒

µα

µαµατ
 

Since  









−=⇒=+

2

2
22

2

2

2

2

11
a

x
by

b

y

a

x
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222
22

2
2

2
22

22

2
2

2

2

2
2

22

24
2

2
24

22bounbary

2

2

1
2

1
2

xea
ba

ab

x
a

b
xa

ba

ab

x
a

b

a

x
a

ba

ab

xb
a

x
ba

ba

−
+

=

+−
+

=

+







−

+
=

+







−

+
=

µα

µα

µα

µατ

 

where e is eccentricity of ellipse and  is given by 

( )2222222

2

22

2

2
2

1

or

1

eabbaea

a

ba

a

b
e

−=⇒−=

−=−=

 

Max. shearing stress occurs on boundary, .maxτ when x is minimum. 

So     
22

2

max
2

ba

ba

+
= µατ  

⇒     max. shearing stress occurs on the end points of minor axis. 

8.7 Torsion of a triangular prism: 

0
2

2

2

2
2 =

∂

∂+
∂

∂=∇
yx

ψψψ       in     R       (1) 

( )22

2

1
yx +=ψ      on    C        (2) 

For the equilateral triangular cross-section, we consider solution of 02 =∇ ψ    given 

by 
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( ) ikiyxici ++=+ 3ψφ         (3) 

( )

( ) kxyxc

cyycx

ikiyxyyixxici

+−=
+−=⇒

+−−+=+⇒

23

32

3223

3and

3

33

ψ
φ

ψφ
     (4) 

From (2) & (4), we get 

( ) ( )2223

2

1
3 yxkxyxc +=+−          on       C      (5) 

The line x = a  will be part of boundary C if 

( ) ( )2223

2

1
3 yakayac +=+−  y∀  

23

2

1
and

2

1
3 akcaac =+=−⇒  

2

3

2
and

6

1
ak

a
c =−=⇒       (6) 

Put values of c and k from (6) in (5), we get 

( ) ( )22223

2

1

3

2
3

6

1
yxaxyx

a
+=+−−

        on        C 

04333 32223 =−+−+⇒ aayxyaxx        on      C 

This is cubic in x, but we know x = a is a part of boundary, so (x - a) is a factor. 

( ) ( ) ( ) ( ) 0344 222 =−−−+−+−⇒ axyaxaaxaxaxx  

( ) ( ) ( )[ ] 03232 =++−+−⇒ yaxyaxax      (7) 

Therefore, boundary C consists of three straight lines 
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032

032

0

=−+

=++

=−

yax

yax

ax

         (8) 

AD = 3a 

 

 









−

∂
∂= y

yzx

ψµατ  

where  

( ) 223

3

2
3

6

1
axyx

a
+−−=ψ         (9) 

and  32

6

1

2

1
y

a
yx

a
−=φ  
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Then 

( )








 −=






 −−−=

y
a

xy

yxy
azx

µα

µατ 6
6

1

 

( ) ( )[ ]axy
a

ayxy
azx −=−=⇒

µαµατ      (10) (i) 

( )

( ) 




 +−=








 +






 −−−=








 +
∂
∂−=

xyx
a

xyx
a

x
xzy

22

22

2

1

33
6

1

µα

µα

ψµατ

 

[ ]22 2
2

yaxx
azy −+=⇒

µατ       (10) (ii) 

Equation (10) gives tangential stresses at any line. 

On the line x = a, 

( )

( )2222

22

3
2

3
2

0

ya
a

ya
a

zyzx

zy

zx

−=+=

−=

=

µατττ

µατ

τ

 

This is maximum when y is minimum (i.e., y = 0). 

aµατ
2

3
max =  (at y = 0) 

τ     is zero at corner ( )aa 3,  
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⇒    Stress is maximum at the midpoint of line x = a (for the line x - a = 0) , i.e., 

maximum at D and  its value is aµα
2

3
. Similarly,  τ  is maximum at other two sides 

at mid-points (E and F) and value of maximum shearing stress is aµα
2

3
.  

Therefore, the shearing stress is maximum at the middle points of the sides of ABC∆  

and maximum value is aµα
2

3
. 

 

 

( ) ( )∫∫∫∫ +−+=−==
RR

zxzyz dydxayxyaxx
a

dydxyxMM 2223 232
2

µαττ  

Therefore  
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( ) ( )

[ ]

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 














 −−−+++−+++=















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

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



−+−−−−
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
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
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
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


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−

−

−
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−=

+
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∫

∫

∫

∫ ∫
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5455
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4

5
4

4
4

4
5

5

2

4
5

43445

2

3323

2
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23

3

2

0
2

22
23

2

3

2

0

2223

3

16
4216

25

32

60

243
81

1812

81

12

83
2

253

3
60

1
2

3

2

4

2
22

2

5

2
3

3.63.4

3

3

2

4
2

2

1

5

3

4

2

9

2
2

60

1

3.4

2

3

2

4
2

4

2

53

2
3

2
2

3
222

3

3.3

22

3.3

23
2

3

2

3

2

3

3
2

232
2

2

aaaa
a

aaa
aaa

a
aa

a

aa
aa

aa
a

a
a

aaa
a

a
aa

a

a

axa
axx

axaxx
a

axx

a

dxax
a

ax
x

axaxaxx
a

dx
axaaxx

axx
ax

a

dxy
ayxy

axx
a

dxdyayxyaxx
a

M

a

a

a

a

a

a

axa

ax

a

ax

ax

y

µα

µα

µα

µα

µα

µα

µα

 

On simplification, we get  

4

5

39
aM µα=  

Torsional rigidity, MD
α
1=  

4

5

39
aD µ=⇒  
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Example: - Let D0 denote the torsion rigidity of circular cylinder. Show that for 

cross-sections of equal areas 0kDDe = ,   015

32
DDt

π=  

where  1
2

22
≤

+
=

ba

ab
K  

Solution:- 

4
0 2

rD µπ=  for a circular cylinder of radius r. 

22

33

ba

ba
De +

= πµ
   (Torsional rigidity of elliptic cylinder where a & b are semi-major & 

semi-minor axis of the ellipse, respectively.)  

4

5

39
xDt µ=    (Torsional rigidity of triangular lamina as Equilateral ∆  of side 

32 x) 

Since areas of cross-section are same, therefore 

) lequilatera(for ellipse)(for circle)(for 

33 22

∆
== xabr ππ

     (1) 

( ) ( ) 2222

33

422

33

422

33

0

222

baba

ba

rba

ba

rba

ba

D

De

+
=

+
=×

+
=

πµ
πµ

  [Using (1)] 

K
ba

ab =
+

=
22

2
 

0KDDe =⇒  
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395

3182

5

39 2

4
4

0 ×
×=×= π

ππµ
µ

r
x

D

Dt   [Using (1) ,    
332

2 π=
r

x
] 

0

0

15

32

15

32

DD

D

D

t

t

=⇒

=⇒

 

8.8 Summary 

We have studied about torsion of cylindrical bars, Tortional rigidity, Torsion and 

stress functions, Lines of shearing stress. We have also studied about simple 

problems related to circle, ellipse and equilateral triangle. 

8.9 Keywords: Torsion, Stress functions, cylindrical bars, Shearing stress, 

Ellipse. 

8.10 Self-assessment Questions 

Q 1.    Derive the expression for torsional rigidity in case of the torsion of an elliptic 

cylinder. 

Q 2.    Derive the expression for torsional rigidity and twisting moment in case of the 

torsion of a cylindrical cylinder. 

Q 3.    Express torsional rigidity in terms of Stress function. 

Q 4.    Show that, in the torsion of an elliptic cylinder, 

22222
22

1
where;2 ba

a
exea

ba

ab −=−
+

= µατ  

and maximum shearing stress occurs on the end point of minor axes. 

Q 5.     Write a note on Prandtl stress Function. 
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Q 6.    What is stress Function? Give its use. 

8.11 Suggested Readings 

1. I.S. Sokolnikoff, Mathematical Theory of Elasticity, Tata McGraw Hill 

Publishing Company Ltd., New Delhi. 

2. Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall, New Delhi. 

3. S. Timoshenko and N. Goodier, Theory of Elasticity, McGraw Hill, New 

York. 

4. Martin H. Sadd., Elasticity Theory, Applications and Numerics AP (Elsevier). 

5. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th Ed., 

Dover Publications, New York. 
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Chapter 9 

Variational Methods 

9.1 Objectives  

In this chapter, we shall discuss the Variational Problems and Euler’s Equations, 

Variational methods.  We shall also discuss the minimum principles in deriving the 

equilibrium and compatibility equations of elasticity namely, Theorems of minimum 

potential energy, Theorems of minimum complementary energy, Reciprocal theorem 

of Betti and Rayleigh. Further we study some problems of Deflection of elastic string 

and elastic membrane by certain loads. 

9.2 Introduction  

The determination of the state of stress in the preceding chapters was made to depend 

on a solution of certain boundary- value problems involving partial differential 

equations. A different approach, exploiting certain broad minimum principles that 

characterize the equilibrium states of elastic bodies, is developed in this chapter.  

We shall be using the minimum principles in deriving the equilibrium and 

compatibility equations of elasticity. 

9.3 Variational Problems and Euler’s Equations 

We shall be concerned with the calculation of the extreme values of functions defined 

by certain integrals whose integrands contain one or several functions assuming the 

roles of arguments. As an example, consider the integral 
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dxyyxFyI
x

x
∫ ′=
1

0

),,()(          (1) 

where ),,( yyxF ′  is a known real function F of the real arguments x, y and 

( )dxdyy /=′ . The value of the integral (1) depends on the choice of y = y(x), hence 

the notation I (y). We shall use the term functional to describe functions defined by 

integrals whose arguments themselves are functions. 

For the meaningfulness of I (y), it is necessary to impose some restrictions on the 

choice of the argument y(x), and on the prescribed function F appearing in the 

integrand of (1).  It is assumed that at the end points of the interval ),( 10 xx , the 

specified values are 10 and yy . 

Thus, 

 1100 )(,)( yxyyxy ==        (2) 

where 10 and yy  are prescribed values. 

Further, for the integral (1) be minimized by the function y = y(x), the necessary 

condition is 

0=








′∂
∂−

∂
∂

y

F

dx

d

y

F
         (3) 

Equation (3) is the Euler’s equation associated with the variational problem I (y) = 

minimum expressed by equation (1). 

On expanding (3), we get the second order ordinary differential equation 



 

MAL-643 173 

0
22

2

2

=
∂
∂−

′∂∂
∂+

′∂∂
∂′+

′∂
∂′′

y

F

yx

F

yy

F
y

y

F
y       (4) 

for the determination of y(x). 

Similar calculations performed on the functional 

dxyyyyxFyI
x

x

n
∫ ′′′=
1

0

)..,,.........,,,()( )(        (5) 

yield the Euler equation 

0)1(
2

2

=








∂
∂−+−









′′∂
∂+









′∂
∂−

∂
∂

nn

n
n

y

F

dx

d

y

F

dx

d

y

F

dx

d

y

F
KKK    ,   (6) 

when certain obvious restrictions on the continuity and differentiability of F and y(x) 

are imposed. 

We consider next the problem of minimizing the double integral 

dydxuuuyxFuI
R

yx∫∫= ),,,,()(        (7) 

on the set )},({ yxu of functions, where each ),( yxu in the set takes on the boundary 

C of the region R specified continuous values  )(su φ= . 

The condition for the minimizing function ),(yxu  expressed by equation (7) is 

0=














∂
∂

∂
∂−









∂
∂

∂
∂−

∂
∂

yx u

F

yu

F

xu

F
       (8) 

Similarly for the double integral 

 dydxuuuuuuyxFuI
R

yyxyxxyx∫∫= ),,,,,,,()( ,      (9) 
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the condition for the minimizing function ),( yxu  is 

0
2

2

2

2

2

2

=














∂
∂

∂
∂+















∂
∂

∂
∂+









∂
∂

∂
∂+















∂
∂

∂
∂−









∂
∂

∂
∂−

∂
∂

yyxyxxyx u

F

yu

F

yu

F

xu

F

yu

F

xu

F
          (10) 

Note: Poisson’s equation fu =∇2  ,        

with given Boundary conditions, is an Euler’s equation of variational problem 

  ( )[ ] [ ] .min2, 22 =++= ∫∫ dydxfuuuyxuI
R

yx       

Solution:  Given variational problem is 

( )[ ] [ ] .min2, 22 =++= ∫∫ dydxfuuuyxuI
R

yx       (1) 

Here fuuuF yx 222 ++=         (2) 

Then the Euler’s equation 

0=














∂
∂

∂
∂−









∂
∂

∂
∂−

∂
∂

yx u

F

yu

F

xu

F
  

becomes  

( ) ( )

fuu

y

u

x

u
f

yyxx

yx

=+⇒

=
∂

∂
−

∂
∂

− 0
22

2
 

which is Poisson’s equation fu =∇2  
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9.4 Theorem of minimum potential energy   

Now, we introduce an important functional, called the potential energy of 

deformation, and prove that this functional attains an absolute minimum when the 

displacements of the elastic body are those of the equilibrium configuration. 

Statement: Of all displacements satisfying the given Boundary conditions, those 

which satisfy the equilibrium equations make the potential energy as absolute 

minimum. 

Proof:    If   iT     are the surface forces 

and   iF    are the body forces 

Also iT   are given over surface T∑     and displacement are prescribed over u∑ . 

 

The displacement for equilibrium state are iu  and arbitrary displacement ii uu δ+ , 

consistent with constraints imposed on the body, i.e., over the portion u∑  of  ∑ , 

where displacement are given, 0=iuδ  but over the part T∑ , iuδ  are arbitrary and we 

call these arbitrary displacement iuδ , the virtual displacement. The virtual work 

Uδ done by external forces iF  and iT   in a displacement iuδ  is defined by equation: 
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τδδδ
τ

duFduTU iiii ∫∫ +∑=
∑

       (1) 

Also strain energy U is given by 

∫=
τ

τdWU           (A) 

where 

ijijeeW µϑλ += 2

2
         (B) 

Since τ is fixed, iT  and iF  do not vary when we consider the displacementiuδ , (1) 

can be written as 












+∑= ∫∫

∑ τ

τδδ duFduTU iiii        (2) 

From (A), 

∫=
τ

τδδ dWU          (3) 

From (2), (3), we get 

0=












−∑−∫ ∫ ∫

∑τ τ

ττδ duFduTdW iiii       (4) 

∫ ∫ ∫
∑

−∑−⇒
τ τ

ττ duFduTdW iiii  has a stationary value. 

If we define the Potential Energy, V by 

∫ ∫ ∫
∑

−∑−=
τ τ

ττ duFduTdWV iiii        (5) 

Equation (4) gives, 0=Vδ         (6) 



 

MAL-643 177 

Next we prove that the functional V assumes a minimum value when the 

displacement iu  are those of equilibrium state. 

To prove this, we will prove that increment V∆ produced in V by replacing 

equilibrium displacement iu by ii uu δ+ is positive for all non-vanishing iuδ . 

u
ijijuuijij eeeeW 






 +−+=∆
+

µϑλµϑλ
δ

22

22
 

We know that ( )ijjiij uue ,,2

1 +=  

( ) ( ) ( )[ ]
( ) ( )

( ) ( )

( )[ ] ( )[ ]

( ) ( ) ( ) ( ) ijijijjiijijjiij

iiii

iiiiiiuu

ijjiijuuij

ijjiijjiuuij

eeuueuue

uuW

uue

uuee

uuuue

µϑλδδδδµ

δϑδϑλ
δϑδϑ

δδ

δδ

δ

δ

δ

−−




 ++




 +++

++=∆⇒

+=+=

++=⇒

+++=

+

+

+

2

,,,,

,,

,,

,,

,,,,

22

1

2

1

2

1

2

1
2

2

1

2

1

2

1

2

1

 

( ) ( ) PueuW jiijii ++=∆⇒ ,, 2 δµδλϑ       (7) 

where 

( )[ ] ( ) ( ) 0
42

2

,,
2

, ≥




 ++=

ijjiii uuuP δδµδλ
      (8) 

Or  

(7) ( )( ) ( ) ( )( )iijiijjiijij uuPueW ,,,2 δδδδµλϑδ =++=∆⇒ Q  
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( ) PuW jiij +=∆⇒ ,δτ  

Also 

( )

( ) ( )

( ) ( )  theorem)divergence sGauss'(by ,

,,

,

ττδτδντ

ττδττδτ

ττδτ

τ

ττ

τττ

ττ

τ

∫∫∫

∫∫∫

∫∫

∫

+−∑=

+−=

+=

∆=∆

∑

dPdudu

dPdudu

dPdu

dWU

ijijijij

ijijjiij

jiij

 

If body is in equilibrium, then  

∑=

−=⇒

=+

onand

in

in0

,

,

ijij

ijij

ijij

T

F

F

ντ
ττ

ττ
 

Therefore  

( ) ( ) 0; ≥++∑=∆ ∫∫
∑

QQduFduTU iiii τδδ
τ

   (9) 

But ( ) ( ) τδδ
τ

duFduTUV iiii ∫∫ −∑−∆=∆
∑

 

Put this in (9), we get 

QV =∆ ,     since 0≥Q   where   0≥= ∫ τ
τ

PdQ  

Hence V∆   is positive. Hence the theorem. 
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9.5 Reciprocal theorem of Betti and Rayleigh or Betti’s Reciprocal theorem 

or theorem of work and reciprocity 

Statement : If an elastic body is subjected to two system of body and surface forces, 

then the work done by the first set of forces ( )ii FT ,  acting over the displacements iu′  

produced by the second set is equal to work done by the second set of forces ( )′′
ii FT ,  

over the displacements iu  produced by the first set of forces,  i.e., prove that 

στστ
στστ

duTduFduTduF iiiiiiii ∫∫∫∫ 




 ′+





 ′=





 ′+





 ′     (1) 

Proof: - Equilibrium equations for the two systems of forces are  

0, =+ ijij Fτ           (2) 

0, =′+′ ijij Fτ           (3) 

L.H.S of (1), 















=+

′=′+′=′





 ′+





 ′+′=






 ′+′+





 ′=






 ′+





 ′=






 ′+





 ′=





 ′+





 ′

∫

∫∫

∫∫

∫∫∫∫

0and

)theoremdivergenceGaussBy(

,

,
,

,,

,

ijij

ijijijijijijjiij
ijijijijii

jiijijijii

j
iijii

ijijiiiiii

F

eweu
deuuF

duuduF

duduF

duduFduTduF

τ
τττττττ

ττττ

τττ

σνττστ

τ

ττ

ττ

στστ

Q

 

Therefore  
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( )

][2

2

)1(ofL.H.S.

ϑδτµϑλϑ

τµλϑδ

ττ

τ

τ

τ

′=′=′




 ′+′=

+′=

′=

∫

∫

∫

iiijijijij

ijijij

ijij

eedee

dee

de

Q

 

Here Integrand is symmetric in prime and unprime variable. 

Therefore  

 ( ) τµϑϑλ
τ

dee ijij∫ ′+′= 2)1(ofR.H.S.  . 

Hence στστ
στστ

duTduFduTduF iiiiiiii ∫∫∫∫ 




 ′+





 ′=





 ′+





 ′ . 

9.6 Theorem of Minimum complementary energy 

Definition: The complementary energy V* is defined by the formula 

( ) ( )∫∫∫
∑∑

∑−=∑−=
uu

dTudWdTuUV iiii

τ

τ*  

where U is the strain energy and W is the strain energy function. 

Statement: The complementary energy *V  has an absolute minimum when the stress 

tensor ijτ  is that of equilibrium state and the varied state of stress satisfy the 

following condition: 

(i) ( ) 0
,

=
jijδτ  in   τ  

(ii)  ( ) 0=jij νδτ  on   T∑  

(iii) ( )ijδτ    is arbitrary on   u∑  
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where iT    are prescribed surface forces and iF     are body forces. 

 

Proof: - Let stresses corresponding to equilibrium state are denoted by ijτ , then 

equilibrium equations are satisfied. So  

ττ in0, =+ ijij F        (1) 

Tijij T ∑= onντ        (2) 

ii fu =      on           u∑  

For varied state,  ijijij δτττ +=′       (3) 

so that  

(i) ττ in0, =+′ ijij F       (4) 

(ii)  Tijij T ∑=′ onντ       (5) 

(iii) On the part u∑  of  ∑ , ′
ijτ  are arbitrary. 

   ( ) 0
,

=
jijδτ       in  τ       (6) 

( ) 0=jij νδτ  on  T∑       (7) 

( )ijδτ  is arbitrary on  u∑  
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ijijij EE
W τθθσττσ =−+= ;

22

1 2  

( )( ) ( )

( )( )22

2

2

2
22

1

2

1

2

1
22

1
22

1

δθθδθθσδτδτσδττσττσ

δθθσδττδττσ

θσττσ

++−+++++=

+−+++=

′−′′+=′

EEEE

EE

EE
W

ijijijijijij

ijijijij

ijij

 

WWW −′=∆ = Increase in strain energy density function. 

( ) ( )ijijijijij W
EE

W δτδδθδτδθθσδττσ =+−+=∆ Q
1

  

where ( ) ( ) ( ) ( ) 0
22

1 2 ≥−+= δθσδτδτσδτ
EE

W ijijij  

( ) ( )

( ) ( )

( )( ) ( )ijijijji

ijijij

ijijijij

Wuu

We

W
EE

W

δτδτ

δτδτ

δτδτθδστσ

++=

+=

+






 −+=∆

,,2

1

1

 

( ) ( )

( ) ( ) ( )
jijiijjiji

ijijji

uWu

WuW

,,

,

δτδτδτ

δτδτ

−+=

+=∆⇒

      (8) 

( ) ( ) ( )( )∫∫ −+=∆=∆
ττ

τδτδτδττ duWudWU
jijiijjiji ,,

 

But ( )
jij ,

δτ = 0   in     τ . 

Therefore third part of integration vanishes. 
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Then using Gauss-divergence theorem, 

( ) ( )

( ) ( )
( )ijijuTjijuT

ijii

ijjiji

T

dWdTu

dWduU

u

∆=∑∑=∑+∑=∑

+∑∆=

+∑=∆

∫ ∫

∫ ∫

∑

∑

νδτνδτ

τδτ

τδτνδτ

τ

τ

writewe,onButon0,Q

 

Therefore  

( ) ( )∫∫ =











∑−∆

∑ τ

τδτ dWdTuU ijii

u

    (9) 

We define *V = complementary P. E. by 

( )∫
∑

∑−=
u

dTuUV ii
*        (10) 

Then ( )∫=∆
τ

τδτ dWV ij
*        (11) 

But W  > 0 

0* ≥∆⇒ V         (12) 

*V⇒ is minimum in τ. 

Particular case:-  

If the surface forces iT  are given over the entire surface, i.e., u∑  = 0. Then UV =* , 

i.e., complementary P.E. becomes strain energy. Then theorem of minimum 

complementary P.E. implies the Theorem of minimum strain energy (castigliano 

theorem). 
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9.7 Theorem of Minimum strain energy (Castigliano theorem) 

Statement: The strain energy U of an elastic body in equilibrium under the action of 

prescribed surfaces forces is an absolute minimum on the set of all values of the 

functional U determined by the solution of the system  

∑=

=+

on

in0,

ijij

ijij

T

F

ντ
ττ

  

Proof: Continuing from the previous theorem on complementary energy, we have  

( ) 0=jij νδτ  on  uT ∑∪∑=∑   

and equation (9) reduces to  

( ) 0≥=∆ ∫
τ

τδτ dWU ij   

showing that the increment U∆   in the strain energy U of a body in equilibrium state 

is positive. Therefore, U is an absolute minimum. 

Hence the result.  

9.8 Deflection of an elastic string 

Let a stretched string, with the end points fixed at (0, 0) and (l, 0). Let it be deflected 

by a transverse load f(x) per unit length of the string. We suppose that the transverse 

deflection y(x) is small (stretch in string is very small) and the change in the 

stretching farce T produced by the deflection is negligible. 
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These are the usual assumptions used in deriving equation for y(x) from consideration 

of static equilibrium. We deduce this equation from the principle of minimum P.E. 

The Potential Energy, V is 

.loadactualtodueenergytheis)(

energyStrain  theis

E.P.ingaintheiswhere

)(

0

0

∫

∫−=

l

l

dxyxf

U

V

dxyxfUV

 

where the strain energy U is equal to the product of the tensile force T by the total 

stretch e of the string. 

Then, ( ) ( ) dxydxdse
ll

∫∫ −′+=−=
0

2

0

11  and we are dealing with the linear theory, 

2y′ < 1, and we have 
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( )

dxyxfy
T

V

TeUdxy
T

U

dxye

l

l

l

∫

∫

∫






 −′=∴

=′=⇒

′=

0

2

0

2

0

2

)(
2

2

2

1

Q
 

Here  F = 




 −′ yxfy
T

)(
2

2  

Euler’s equation is  

yT
y

F
xf

y

F

y

F

y

F

dx

d

′=
′∂

∂−=
∂
∂

=
∂
∂−









′∂
∂

;)( Therefore

0

 

Then using this Euler’s equation, we get 

( )
0)(

0)(

=+′′⇒

=+′

xfyT

xfyT
dx

d
 

This is required equation for the transverse deflection of the string under load f(x). 

9.9 Deflection of central line of a beam 

Let the axis of beam of constant cross-section coincide with the x-axis, and let that the 

beam is bent by a transverse load p = f(x) per unit of length of beam. 
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Here shearing stresses 231312 ,, τττ  are negligible in comparison with the tensile 

stress. 

I

My
xx =τ  

where M     is  Bending moment 

y    is Deflection 

I     is   M. I. 

The strain 
EI

My

E
e xx

xx ==
τ

 

where E is modulus of elasticity. 

Strain energy density function W  is 

2

22

22

1

EI

yM
eW xxxx == τ  

The strain energy per unit length of the beam 

EI

M
I

EI

M

dy
EI

M
dW

RR

22

2
2

2

2

2
2

2

==

== ∫∫ σσ
 

Also from Bernoulli-Euler Law, 
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( )2"
2

1

"

yIEdW

yIEM

R

=⇒

−=

∫ σ  

The total strain energy U is obtained by integrating over the length of beam and we 

get  

( )

( )

( ) dxyxfyEI

dxyxfdxEIyV

dxyIEU

l

ll

l

∫

∫∫

∫






 −=

−=

=

0

2

0

2

0

0

2

"
2

1

"
2

1

So

"
2

1

 

which is of the form 

( ) ( )( )∫ −−−=
2

1

,,",',,
x

x

n dxyyyyxFyI  

and  Euler’s equation is  

0..........
2

2

' =−+− ′′yyy F
dx

d
F

dx

d
F  

Here 
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( )
( )

"

0

"
2

1

"

'

2

yEIF

F

xfF

yxfyIEF

y

y

y

=

=

−=

−=

 

Then Euler’s equation becomes  

( ) ( ) 0"
2

2
=− xfEIy

dx

d
 

9.10 Deflection of an elastic membrane 

Let membrane with fixed edges occupy some region in the xy-plane. We suppose that 

the membrane is stretched so that the tension T is uniform. Here load is f(x, y). 
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( )

( )∫∫
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−++=

−=

R

yx

R

dydxuue

dydxde

1122
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







∂
∂=

y

u

x

u
dσ     is the element of area of membrane in deformed 

state. If the displacement u and its first derivatives are small, then 
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∂
∂

,,),(  



 

MAL-643 191 

Then the Euler’s equation,  

0=














∂
∂

∂
∂−









∂
∂

∂
∂−

∂
∂

yx u

F

yu

F

xu

F
 

0),(

0),(

0),(

2 =++∇⇒

=++⇒

=
∂

∂
−

∂
∂

−−⇒

yxfuT

yxfTuTu

y

Tu

x

Tu
yxf

yyxx

yx

 

which is required equation. 

9.11 Summary 

We have studied about Variational methods and some theorems namely, Theorems of 

minimum potential energy, Theorems of minimum complementary energy, Theorems 

of minimum strain energy, Reciprocal theorem of Betti and Rayleigh. We have also 

discussed about Deflection of elastic string, elastic beam and elastic membrane. 

9.12 Keywords: Potential energy, Complementary energy, Strain energy, Betti and 

Rayleigh, Deflection, elastic string, Elastic membrane 

9.13 Self-assessment Questions 

Q 1. State and prove Theorems of minimum potential energy. 

Q 2. State and prove Betti’s reciprocal theorem. 

Q 3. State and prove Theorems of minimum Complementary energy. 

Q 4. Discuss the problem of Deflection of central line of a beam by transverse load. 

Q 5. Discuss the problem of Deflection of an elastic string by transverse load and 

hence give its Euler’s equation. 
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Q 6. Discuss the problem of Deflection of an elastic membrane by transverse load   

f(x, y). 

 

9.14  Suggested Readings 
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Chapter 10 

Direct methods 

10.1 Objectives 

In this chapter, we shall discuss how to find solution of Euler’s equation in the 

calculus of variations by direct methods namely Ritz method, Galerkin method and 

Kantorovich method. Some numerical examples based on these methods are also 

given.   

10.2 Introduction 

It was demonstrated in Sections (9.4) and (9.6) that the determination of functions that 

minimize the functional (equation (5) in section 9.4) for the potential energy V, or the 

expression (equation (10) in section 9.6) for the complementary energy V* , is 

equivalent to obtaining solutions of appropriate Euler's equations. In the variational 

problem V = min, the Euler equations are the Cauchy equilibrium equations, while, in 

the problem V* = min, they are the compatibility equations. 

In the previous chapter, we have studied some uses of minimum principles in the 

derivation of the differential equations for specific problems. However, so by far more 

important use of these principles relates to the construction, with the aid of direct 

methods of calculus of variations, of sequences of functions which converge to 

desired solutions of Euler's equations. One such direct method was proposed by Lord 

Rayleigh and, independently and from a more general point of view, by W. Ritz. The 
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other direct methods in the calculus of variations were proposed by R. Courant, K. 

Friedrichs, B. G. Galerkin, L. V. Kantorovich, S. G. Mikhlin, E. Trefftz, and others. 

10.3 Rayleigh –Ritz Method (or Ritz’s Method in one dimension) 

How to find approximate solution of variational problem using Ritz’s Method. 

Consider the variational problem 

[ ] min),,(
2

1

=′= ∫ dxyyxFyI
x

x

          (1) 

in which all admissible function y = y (x) are such that 

2211 )(,)( yxyyxy ==             (2) 

We know that such a function y is a solution of the Euler’s equation 

0=′− yy F
dx

d
F          (3) 

A direct method to obtain the desired function was proposed by W. Ritz in 1911. 

In this method, we construct a sequence of functions which converge to desired 

solution of the Euler’s equation (3). 

Outlines of the Ritz Method: 

Let y = y* (x) be the exact solution of the given variational problem. Let I(y*) = m be 

the minimum value of the functional in (1).  

In this method, one tries to find a sequence })({ xyn of admissible functions such that 

mxyI n
n

=
∞→

))((lim          (4) 

so that  
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)(*)(lim xyxyn
n

=
∞→

         (5) 

 is the required function. 
 
According to Ritz, solution of (1) can be approximated by a linear combination of 

suitable chosen co-ordinate functions ( ){ }xiφ . 

Let approx. solution is taken as  

)(..........)()()( 22110 xcxcxcxy nnn φφφφ ++++=      (6) 

where 1c , 2c ………, nc  are constants to be determined and n is the no. of 

parameters. The functions ( ){ }xiφ are to be so chosen that the (6) satisfies the given 

B.C.’s. Generally, we chosen  0φ  so that it takes on prescribed values at the ends and 

remaining  )1(,)( ≥jxjφ  vanish at both ends. 

The approx. solution (6) is then put in (1) and required integration is performed, 

getting a function of parameters  sci ' ,  

( )ncccII ,.......,, 21=          (7)  

which can be minimized on using differential calculus, i.e., by solving n equations 

0=
∂
∂

ic

I
          (8) 

If ( )nici ,......,2,1= are the n parameters obtained by solving (8), then approx. 

minimizing function is 

)(..........)()()( 22110 xcxcxcxy nnn φφφφ ++++= . 

Example: - Apply Ritz’s method to solve the problem 
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[ ] ( ) min2
1

0

22 =−−′= ∫ dxxyyyyI        (1) 

0)1()0( == yy .         (2) 

Solution: - we choose 0φ =0 

( )xxk
k −= 1φ  (Choose so that at end points, kφ  to vanish)   (3) 

i.e., approx. solution is  

{ }1
21

2
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.........)1(

)1(..........)1()1()(
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−++−+−=
n

n

n
nn

xcxccxx

xxcxxccxxxy
    (4) 

Take n = 1, so that approx. solution is 

11
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)21()(

)1()(

cxxy

cxxxy

−=′
−=

         (5) 

Put 1y  in place of y in (1), we get 
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43

1

1

0

4523
2
1

1

0

1
22

1
222

1
2

=−⇒

=







−−








+−−+⇒

=−−−−−∫

cc

xx
c

xxxx
xc

dxcxxcxxcx

 

So 1
2
11 6

1

10

3
)( cccI −=  

The parameter 1c  is determined from  
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18

5
0

6

1

5

3

0
6

1

10

3

0
)(

11

1
2
1

1

1

1

=⇒=−⇒

=






 −
∂
∂

⇒

=
∂

∂

cc

cc
c

c

cI

 

Therefore, the Ist approx. solution is )1(
18

5
1 xxy −=  

Take n = 2, so that approx. solution is  

( )
( )[ ]2

212

212

32)21()(

)1()(

xxccxxy

xccxxxy

−+−=′

+−=
 

Put in (1) in place of y(x), we get 

( ) ( ) ( ) min
22222410144

)28124()2341(1

0
43

2
32

1
5432

21

654322
2

2
1

432

=













+−++−+−++−+

−++−+−++−
∫ dx

xxcxxcxxxxxcc

xxxxxccxxxx
 

( ) min
10

1

6

1

10

3

105

13

10

3
, 2121

2
2

2
121 =−−++= ccccccccI  

 Now  21 and cc   are determined by putting 

0,0
21

=
∂
∂=

∂
∂

c

I

c

I
 

So we have 

41

7
,

369

71
10

1

10

3

105

26
and

,
6

1

10

3

5

3

21

12

21

==⇒

=+

=+

cc

cc

cc
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Then 2nd approx. solution is  








 +−== xxxxyxy
41

7

369

71
)1()()( 22  

Example: - Apply Ritz’s method to solve the problem 

[ ] ( ) min
1

0

22 =+′= ∫ dxyyyI                    (1) 

0)1()0( == yy .         (2) 

Solution: we choose 0φ = x     and  

( )xxk
k −= 1φ ,  k = 1,2,……,n.    

10.4 Ritz’s Method in two dimension 

Consider the functional in the form 

[ ] min),,,,(),( == ∫∫ dydxuuuyxFyxuI
R

yx       (1) 

Let approx. solution is 

( )∑
=

=
n

j
jjn yxcyxu

1

,),( φ  

so that ( )yxj ,φ   are to satisfy the given boundary conditions.  

i.e., approximate solution is  

( ) ( )yxcccu nn ,........21 φ+++=  
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where nccc ,........,, 21  are the parameters.  Use in (1) and perform integration, then 

put 0=
∂
∂

ic

I
 

If ic are values obtained, then approx. Minimizing solution is 

( ) ( )yxcccu nn ,......21 φ+++=  

Example:- ( )[ ] .min2,
22

=











−









∂
∂+









∂
∂= ∫∫ dydxu

y

u

x

u
yxuI

R

 

where R is square ayax ≤≤ ,  and u = 0 on boundary of R. 

Solution: - Let R is square ayax ≤≤ ,  (shown in figure) 

 

Let n = 1, 

Assume approx. solution as 

( ) ( ) ( )2222
11 , ayaxcyxuu −−=≅  

where 1c is the parameter to be determined. 



 

MAL-643 200 

Then we see that ( )yxu ,1 clearly satisfies the given boundary conditions. 

( )

( )22
1

22
1

2

2

axycu
y

u

ayxcu
x

u

y

x

−==
∂
∂

−==
∂
∂

  

Then putting in (1), we get 

[ ] ( )( ) ( )( ) ( )( )[ ] dxdyayaxcaxycayxcuI
a

a

a

a
∫ ∫
− −

−−−−+−= 2222
1

222
1

222
11 222  

[ ] ( ) ( ) ( ) ( )[ ]∫ ∫
−

−−−−+−=
a

a

a

dxdyayaxcaxycayxcuI
0

2222
1

22222
1

22222
11 244  

( ) ( ) ( )( )[ ] dxdyayaxcaxycyaayxc
a

a

a

∫ ∫
−

−−−−+−+=
0

2222
1

22222
1

224422
1 24242  

( ) ( ) dxya
y

axcax
y

c
y

aya
y

xc

aa

a 0

2
3

22
1

222
3

2
1

3
24

5
22

1 3
2

3
4

3
2

5
42 ∫

−
















−−−−+








−+=

 

( ) ( ) dxa
a

axcax
a

caa
a

xc

aa

a 0

3
3

22
1

222
3

2
1

55
5

22
1 3

2
3

4
3

2

5
42 ∫

−
















−−−−+








−+=  

( ) ( ) dxaxacax
a

caxc
a

a
∫
−









−+−+







 −+= 223
1

222
3

2
1

522
1 3

4

3
4

15

10153
42  

( ) ( ) dxaxacaxacaxc
a

∫ 




 −+−+=
0

2232
1

22232
1

522
1 3

4

3

4

15

8
.44  

6
1

82
1 9

32

45

256
acac −=  
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Thus [ ] 1
62

1
8

1 9

32

45

256
cacacI −=  

Then 1c is given by 

( )

21

6
1

8

1

1

16

5

0
9

32

45

512

0

a
c

aca

c

cI

=⇒

=−⇒

=
∂

∂

 

Therefore,   Ist approx. solution is 

( ) ( ) ( )2222
21 16

5
, ayax

a
yxuu −−=≅  

10.5 Galerkin Method 

In 1915, Galerkin proposed a method of finding an approximate solution of the 

boundary value problems in mathematical physics. This method shall have wider 

scope than the method of Ritz. 

Here approx. solution of Boundary Value Problem can be obtained.  

Let us consider linear differential equation 

L[u] = 0   in R            (1) 

subjected to some linear homogenous boundary conditions. 

It is assumed, for the sake of simplicity that the domain R is two-dimensional.  

We take an approx. solution of the problem in the form 

( )∑
=

=
n

j
jjn yxayxu

1

,),( φ        (2) 
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where ( )yxj ,φ  are suitable co-ordinate functions and ja  are constant. 

We suppose that the functions ( )yxj ,φ  satisfy the same boundary conditions as the 

exact solution u(x, y) and that the set }{ jφ  is complete in the sense that every 

piecewise continues function ( )yxf , , say, can be approximated in R by the sum 

( )∑
=

N

j
jj yxa

1

,φ  in such a way that 

∫∫ ∑ 









−≡

=R

N

j
jjN dydxcf

2

1

φδ       (3) 

can be made as small as we wish. 

Ordinarily, the finite sum nu   given in (2) will not satisfy (1) and the substitution of 

nu  will yield 

( ) ( ) RyxyxuL nnn in0,;,)( ≠= εε      (4) 

If maximum of ( )yxn ,ε  is small, we can consider ( )yxun , given is (2) as a satisfactory 

approximation to the exact solution u(x, y). 

Thus, to get a good approximation, we have to choose the constants ja  so as to 

minimize the error function ( )yxn ,ε . 

A reasonable minimization technique is suggested by the following: 
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Galerkin established that If one represents u(x, y) by the series 

( )∑
∞

=

=
1

,),(
i

ii yxayxu φ , with suitable properties and consider the nth partial sum 

( )∑
=

=
n

i
iin yxayxu

1

,),( φ , then the orthogonality condition 

[ ] ( ) ∞→=∫∫ ndydxyxuL
R

in as0,φ      (5) 

is equivalent to the statement L[u] = 0        (6) 

This led Galerkin to impose on the function )( nuL  a set of orthogonality conditions 

(now called Galerkin conditions) 

[ ] ( ) ).........,,2,1(;0, nidydxyxuL
R

in ==∫∫ φ     (7) 

This yields the set of equations 

).........,,2,1(;0
1

nidydxaL i

R

n

j
jj ==









∫∫ ∑

=

φφ     (8) 

This set of n equations in (8) determines the constants ja  in the approximate solution 

(2). 

 
Remark 1. When the differential equation and the boundary conditions are self-

adjoint and the corresponding functional I (u) in the problem 

I (u) = min ,         (9) 

is positive definite, then the system of Galerkin equation in (8) is equivalent to the 

Ritz system 
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0)( =
∂
∂

n
j

uI
a

          (10) 

Remark 2. It is important to the note that in Galerkin’s formulation, there is no 

reference to any connection of equation (1) with a variational problem. Indeed, the 

Galerkin method can be applied to a wider class of problems phrased in terms of 

integrals and other types of functional equations. 

Example: Use Galerkin Method to find approx. solution of 

22 −=∇ ψ  in R,          (1) 

=ψ 0   on boundary C of R,         (2) 

where R is the rectangle, byax ≤≤ , . 

Solution:  Let R is the rectangle, byax ≤≤ ,  (shown in figure) 

Now we have to solve the system consisting of equations (1) and (2) by using the 

Galerkin method. We write (1) as 

,0)( =ψL           (3) 

where 

22 +∇=L           (4) 

We take an approximate solution in the form 

( ) ( ) ( ) ( )kk
nn yxayaxaabyaxyx 222

3
2

21
2222 ........, ++++−−=ψ   (5) 
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This approximate solution satisfies the boundary conditions in (3). Here 

naaaa ........,,,, 321   are constants to be determined by using Galerkin method. 

Let n =1, Ist approx. solution is  

( ) ( ) ( )2222
1111 , byaxaayx −−== φψ      (6) 

with 

( ) ( )2222
1 byax −−=φ        (7) 

Then 1ψ  satisfies given B.C. 

Following Galerkin, 1a  is determined by orthogonality condition, 

( )[ ] 02 11
2 =+∇∫ ∫

− −

a

a

b

b

dxdyφψ  

Or  

( ) ( ) ( )[ ] 02 2222
1

2 =−−+∇∫ ∫
− −

a

a

b

b

dxdybyaxψ     (8) 
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where 
2
1

2

2
1

2

1
2

yx ∂

∂
+

∂

∂
=∇

ψψψ  

Now we have, 

( ) ( )[ ]
( ) ( )[ ]2222

1

2222
12

1
2

2
1

2

1
2

2

22

byaxa

byaxa
yx

−+−=

−+−=
∂

∂
+

∂
∂

=∇
ψψψ

    (9) 

[ ] ( ) ( ) 02 2222
1

2 =−−+∇∴ ∫ ∫
− −

dxdybyax
a

a

b

b

ψ      [Using (8)] 

( ) ( ){ }[ ] ( ) ( )

( ) ( ) ( ) ( ) ( )( )[ ]
( ) ( ) ( ) ( ) ( )( )[ ]

( ) ( ) ( ){ } ( )[ ]∫ ∫

∫ ∫

∫ ∫

∫ ∫

=−+++−−−⇒

=−−+−−+−−⇒

=−−+−−+−−⇒

=−−+−+−⇒

− −

− −

a b

a b

a

a

b

b

a

a

b

b

dxdybybyaaxabyax

dxdybyaxaxbyabyaxa

dxdybyaxaxbyabyaxa

dxdybyaxbyaxa

0 0

2244
1

22
1

2222

0 0

222222222
1

22222
1

222222222
1

22222
1

22222222
1

0218

08

02

(9)] [Using022

  

On integration w. r. t. y and x, we get 

( )

( )221

33
1

2233

4

5

0
9

32

45

128

ba
a

baababa

+
=⇒

=−+
 

Then Ist approx. solution is 

( ) ( )( ) ( )2222
221 4

5
, byax

ba
yx −−

+
=ψ  
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10.6 Kantrovich Method 

In 1932, Kantorvich proposed a generalization of the Ritz method. The essence of the 

method consists in the reduction of integration of partial differential equations 

(Euler’s equation) to the integration of systems of ordinary differential equations. 

It is applied to variational problems that involve several independent variables.  

In the application of the Ritz method to the problem 

[ ] min),,,,(),( == ∫∫ dydxuuuyxFyxuI
R

yx       (1) 

where u(x, y) takes on given values at boundary of region R. 

Approx. solution of variational problem (1) can be considered in the form 

( )∑
=

=
n

j
jjn yxxcyxu

1

,)(),( φ         (2) 

where )(xc j are unknown functions of the independent variable x, and ( )yxj ,φ  are 

suitable chosen coordinate functions so as to satisfy the same boundary conditions as 

imposed on u. 

We then determined the coefficients )(xc j so as to minimize )( nuI . 

We put (2) in (1) in place u(x, y), 

( ) min,)()(
1

=







= ∑

=

n

j
jjn yxxcIuI φ       (3) 

Since ( )yxj ,φ   are known functions, we perform integration w.r.t. y and we get 

reduced form of the problem (1) as 
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[ ] ( ) min)(),(,
2

1

=′= ∫ dxxcxcxGuI
x

x

jjn        (4) 

Kantorvich proposed to determine the function )(xc j  so that they minimize the 

functional (4). 
 
The functions )(xc j  are then determined by solving Euler’s equation corresponding 

to (4), which is a 2nd order differential equation. 

Example: -  12 −=∇ u         (1) 

in the rectangle  bybaxa ≤≤−≤≤− ,       (2) 

where u = 0 on the boundary. 

Solution: - Let R is the rectangle, byax ≤≤ ,  (shown in figure) 

 

 

Equation (1) is Euler’s equation for the functional 
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( )[ ] [ ] .min2, 22 =−+= ∫∫ dydxuuuyxuI
R

yx       (3) 

Let approx. solution is  

( ) ( ) ( )22
11 , ybxcyxu −=         (4) 

Then 1u  satisfied B.C. on y = b± . 

Substitute (4) in place of u(x, y) in (3), we get 

[ ] ( )( ) ( ) ( )[ ] dxdyybcycybcuI
a

a

b

b
∫ ∫
− −

−−+−′= 22
1

2
1

222
11 22     (5) 

Perform integration w.r.t. y, we get 

[ ] ( ) ( )[ ] dxdyybcycybybcuI
a

a

b

∫ ∫
−

−−+−+′=
0

22
1

22
1

22442
11 2422  

dx
y

yb
y

cc
yby

yb

ba

a 0

3
2

3
2
1

2
1

325
4

33
4

3
2

5
2∫

− 















−−+′








−+=  

∫
−

















−−+′








−+=

a

a

dx
b

bcbccb
b

b
3

2
3

4

3

2

5
2

3
3

1
32

1
2

1
5

5
5  

dxb
c

bc
b

c
a

a
∫
−









−+′= 3132

1

5
2

1 3

4

3

4

15

8
2  

[ ] ∫
−








 −+′=⇒
a

a

dxcbcbcbcI 1
32

1
32

1
5

1 3

8

3

8

15

16
     (6) 

( )xc1  is determined by solving Euler’s eq. corresponding to (6). 

The general Euler’s equation is 
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0
'

=








∂
∂−

∂
∂

y

F

dx

d

y

F
 

Here ( )xcy 1is   ;   ( )xcc 11 '' =   ; 

( )xcy 1is ′′  

Then the Euler’s equation becomes, 

( )

( ) ( ) 0
3

8

3

16

15

32

0
3

8

3

16
)(

15

32

3
1

3
1

5

3
1

3
1

5

=+−′′⇒

=+−




 ′

bxcbxcb

bxcbxcb
dx

d

 

Or   
2121 4

5

2

5

b
c

b
c −=−′′         (7) 

which is homogeneous linear D.E. with constant coefficients.  

Characteristics equation is  

b
m

b
m

1

2

5

0
2

5
2

2

×±=⇒

=−
 

C.F. =
x

b
x

b BeAe

1

2

51

2

5 ×−×
+  

P.I. = 
2

1

4

5

2

5
1 0

2

2
2

=






 −

−
e

b
b

D
 

Then solution of equation (7) is 

( )
2

12

5

2

5

1 ++=
×−×

b

x

b

x

BeAexc        (8) 
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where A and  B are the arbitrary constants to be determined from B.C.  

As   ( ) ( ) 011 =−= acac  

Now 

( )
2

1
0 2

5

2

5

1 −=+⇒=
×−×

b

a

b

a

BeAeac      (9) 

and ( )
2

1
0 2

5

2

5

1 −=+⇒=−
××−

b

a

b

a

BeAeac     

 (10) 

Solving (9) and (10), we get 

2

2

5

2

5

1
2

1














+

−==⇒
×

×

b

a

b

a

e

e
BA       

 (11) 

Substituting the values of A and B from equation (11) into (8), we get 

( )




































+














+

−=

+













+=

×−×

×−×

×−×

b

a

b

a

b

x

b

x

b

x

b

x

ee

ee

eeAxc

2

5

2

5

2

5

2

5

2

5

2

5

1

1
2

1

2

1
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So ( ) ( )





































−














−=
×

×

b

a

b

x

byyxu

2

5

2

5

22
1

cosh

1cosh

2

1
,  

10.7 Summary 

We have find solutions of Euler’s equation by direct methods such as Ritz method, 

Galerkin and Kantorovich methods. 

10.8  Keywords: Direct methods, Ritz method, Galerkin method, Kantorovich 

method, Euler’s equation 

10.9  Self-assessment Questions 

Q 1. Use Kantorovich method to find an approximate solution of the Poisson’s 

equation 

12 −=∇ u ,  

in the square ayaaxa ≤≤−≤≤− , ,  

where u = 0 on the boundary. 

Q 2. Apply Ritz’s method to solve the problem 

[ ] ( ) min2
1

0

22 =−−′= ∫ dxxyyyyI       

0)1()0( == yy  , 

by considering the approximate solution in the form  1)1( axxy −=  
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Q 3. Apply Ritz’s method to solve the problem 

( )[ ] .min2,
22

=











−









∂
∂+









∂
∂= ∫∫ dydxu

y

u

x

u
yxuI

R

 

where R is square ayax ≤≤ ,  and u = 0 on boundary of R. 

Q 4. Use Galerkin Method to find approx. solution of 

22 −=∇ ψ  in R. 

=ψ 0  on boundary of R,  

where R is the square, ayax ≤≤ , . 
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